Questa pagina mostra come creare un set di dati Vertex AI dal tuo per poter iniziare ad addestrare i modelli di riconoscimento delle azioni. Puoi creare un utilizzando la console Google Cloud o l'API Vertex AI.
Crea un set di dati vuoto e importa o associa i dati
Console Google Cloud
Segui le istruzioni riportate di seguito per creare un set di dati vuoto e importare o associare i tuoi dati.
- Nella console Google Cloud, nella sezione Vertex AI, vai a alla pagina Set di dati.
- Fai clic su Crea per aprire la pagina dei dettagli della creazione del set di dati.
- Modifica il campo Nome set di dati per creare una visualizzazione descrittiva del set di dati. nome.
- Seleziona la scheda Video.
- Seleziona Riconoscimento dell'azione video.
- Seleziona una regione dall'elenco a discesa Regione.
- Fai clic su Crea per creare il set di dati vuoto e vai alla pagina di importazione dei dati.
- Scegli una delle seguenti opzioni dalla sezione Seleziona un metodo di importazione:
Carica i dati dal tuo computer
- Nella sezione Seleziona un metodo di importazione, scegli di caricare i dati dal computer.
- Fai clic su Seleziona file e scegli tutti i file locali da caricare in Cloud Storage di sincronizzare la directory di una VM con un bucket.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere la posizione del bucket Cloud Storage in cui caricare i dati.
Carica un file di importazione dal computer
- Fai clic su Carica un file di importazione dal tuo computer.
- Fai clic su Seleziona file e scegli il file di importazione locale da caricare in Cloud Storage di sincronizzare la directory di una VM con un bucket.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere una Percorso del bucket Cloud Storage in cui caricare il file.
Seleziona un file di importazione da Cloud Storage
- Fai clic su Seleziona un file di importazione da in Cloud Storage.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere il file di importazione in Cloud Storage.
- Fai clic su Continua.
L'importazione dei dati può richiedere diverse ore, a seconda delle dimensioni dei dati. Puoi chiudere questa scheda e tornarci in un secondo momento. Riceverai un'email quando vengono importati i dati.
API
Per creare un modello di machine learning, devi prima avere per la raccolta di dati rappresentativi con cui eseguire l'addestramento. Dopo aver importato i dati, puoi apportare modifiche e avviare l'addestramento del modello.
Crea un set di dati
Utilizza gli esempi riportati di seguito per creare un set di dati per i tuoi dati.
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
-
LOCATION: regione in cui verrà archiviato il set di dati. Deve essere un
che supporta le risorse del set di dati. Ad esempio,
us-central1
. Consulta l'elenco delle località disponibili. - PROJECT: il tuo ID progetto.
- DATASET_NAME: il nome del set di dati.
- PROJECT_NUMBER: il numero del progetto generato automaticamente.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets
Corpo JSON della richiesta:
{ "display_name": "DATASET_NAME", "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml" }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nel risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata", "genericMetadata": { "createTime": "2020-07-07T21:27:35.964882Z", "updateTime": "2020-07-07T21:27:35.964882Z" } } }
Terraform
L'esempio seguente utilizza la risorsa Terraform google_vertex_ai_dataset
per creare un set di dati video denominato video-dataset
.
Per scoprire come applicare o rimuovere una configurazione Terraform, consulta: Comandi Terraform di base.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.
L'esempio seguente utilizza l'SDK Vertex AI per Python per creare un set di dati e importare i dati. Se esegui questo codice campione, puoi ignorare il passaggio Importa dati di questa guida.
Questo particolare esempio importa i dati per la classificazione. Se il modello ha un uno scopo diverso, devi modificare il codice.
Importa dati
Dopo aver creato un set di dati vuoto, puoi importarli al suo interno. Se hai utilizzato l'SDK Vertex AI per Python per creare il set di dati, potresti avere già importato i dati durante la creazione. In questo caso, puoi saltare .
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION: regione in cui deve essere archiviato il set di dati. Ad esempio,
us-central1
. - PROJECT: il tuo ID progetto.
- DATASET_ID: l'ID del set di dati.
- IMPORT_FILE_URI: percorso del file CSV o Righe JSON in Cloud Storage che elenca gli elementi di dati archiviati in Cloud Storage usare per l'addestramento del modello; per conoscere i formati e le limitazioni dei file di importazione, consulta Preparazione dei dati video.
- OBJECTIVE: specifica "classification", "object_tracking" o "riconoscimento di azioni" l'obiettivo del modello.
- PROJECT_NUMBER: il numero di progetto generato automaticamente per il tuo progetto.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import
Corpo JSON della richiesta:
{ "import_configs": [ { "gcs_source": { "uris": "IMPORT_FILE_URI" }, "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/automl_video_OBJECTIVE_io_format_1.0.0.yaml" } ] }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nel risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata", "genericMetadata": { "createTime": "2020-10-08T20:32:02.543801Z", "updateTime": "2020-10-08T20:32:02.543801Z" } } }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Ottieni stato dell'operazione
Alcune richieste avviano operazioni a lunga esecuzione che richiedono tempo per essere completate. Queste richieste restituiscono un nome dell'operazione, che puoi utilizzare per visualizzarne lo stato o annullarla. Vertex AI offre metodi helper per effettuare chiamate a operazioni a lunga esecuzione. Per ulteriori informazioni, consulta Utilizzo delle operazioni di lunga durata.