Definieren Sie eine ML-Pipeline mit dem Kubeflow Pipelines (KFP) SDK und kompilieren Sie sie in eine YAML-Datei.
Laden Sie die kompilierte Pipeline-Definition in einen Cloud Storage-Bucket hoch.
Mit Cloud Run Functions können Sie eine Funktion erstellen, konfigurieren und bereitstellen, die durch ein neues oder vorhandenes Pub/Sub-Thema ausgelöst wird.
Pipeline definieren und kompilieren
Mit dem Kubeflow Pipelines SDK eine geplante Pipeline erstellen und in eine YAML-Datei kompilieren.
Beispiel hello-world-scheduled-pipeline:
fromkfpimportcompilerfromkfpimportdsl# A simple component that prints and returns a greeting string@dsl.componentdefhello_world(message:str)-> str:greeting_str=f'Hello, {message}'print(greeting_str)returngreeting_str# A simple pipeline that contains a single hello_world task@dsl.pipeline(name='hello-world-scheduled-pipeline')defhello_world_scheduled_pipeline(greet_name:str):hello_world_task=hello_world(greet_name)# Compile the pipeline and generate a YAML filecompiler.Compiler().compile(pipeline_func=hello_world_scheduled_pipeline,package_path='hello_world_scheduled_pipeline.yaml')
Kompilierte YAML-Pipeline in den Cloud Storage-Bucket hochladen
Öffnen Sie den Cloud Storage-Browser in der Google Cloud Console.
Laden Sie mithilfe eines vorhandenen Ordners oder eines neuen Ordners Ihre kompilierte YAML-Pipeline (in diesem Beispiel hello_world_scheduled_pipeline.yaml) in den ausgewählten Ordner hoch.
Klicken Sie auf die hochgeladene YAML-Datei, um die Details aufzurufen. Kopieren Sie den gsutil-URI zur späteren Verwendung.
Cloud Run-Funktion mit Pub/Sub-Trigger erstellen
Gehen Sie in der Konsole zur Seite Cloud Run-Funktionen:
Geben Sie der Funktion im Abschnitt Grundlagen einen Namen (z. B. my-scheduled-pipeline-function).
Wählen Sie im Abschnitt TriggerCloud Pub/Sub als Trigger-Typ aus.
Klicken Sie in der Liste Cloud Pub/Sub-Thema auswählen auf Thema erstellen.
Geben Sie im Feld Thema erstellen einen Namen für das neue Thema ein (z. B. my-scheduled-pipeline-topic) und wählen Sie Thema erstellen aus.
Übernehmen Sie für alle anderen Felder die Standardeinstellungen und klicken Sie auf Speichern, um die Konfiguration des Triggerabschnitts zu speichern.
Übernehmen Sie für alle anderen Felder die Standardwerte und klicken Sie auf Weiter, um zum Abschnitt „Code“ zu gelangen.
Wählen Sie unter Laufzeit die Option Python 3.7 aus.
Geben Sie unter Einstiegspunkt „subscribe“ ein. Dies ist der Name der Beispielfunktion für den Codepunkt des Eintrags.
Wählen Sie unter QuellcodeInline-Editor aus, falls er noch nicht ausgewählt ist.
Fügen Sie in der Datei main.py den folgenden Code hinzu:
importbase64importjsonfromgoogle.cloudimportaiplatformPROJECT_ID='your-project-id'# <---CHANGE THISREGION='your-region'# <---CHANGE THISPIPELINE_ROOT='your-cloud-storage-pipeline-root'# <---CHANGE THISdefsubscribe(event,context):"""Triggered from a message on a Cloud Pub/Sub topic. Args: event (dict): Event payload. context (google.cloud.functions.Context): Metadata for the event. """# decode the event payload stringpayload_message=base64.b64decode(event['data']).decode('utf-8')# parse payload string into JSON objectpayload_json=json.loads(payload_message)# trigger pipeline run with payloadtrigger_pipeline_run(payload_json)deftrigger_pipeline_run(payload_json):"""Triggers a pipeline run Args: payload_json: expected in the following format: { "pipeline_spec_uri": "<path-to-your-compiled-pipeline>", "parameter_values": { "greet_name": "<any-greet-string>" } } """pipeline_spec_uri=payload_json['pipeline_spec_uri']parameter_values=payload_json['parameter_values']# Create a PipelineJob using the compiled pipeline from pipeline_spec_uriaiplatform.init(project=PROJECT_ID,location=REGION,)job=aiplatform.PipelineJob(display_name='hello-world-pipeline-cloud-function-invocation',template_path=pipeline_spec_uri,pipeline_root=PIPELINE_ROOT,enable_caching=False,parameter_values=parameter_values)# Submit the PipelineJobjob.submit()
Ersetzen Sie Folgendes:
PROJECT_ID: Das Google Cloud Projekt, in dem diese Pipeline ausgeführt wird.
REGION: Die Region, in der diese Pipeline ausgeführt wird.
PIPELINE_ROOT: Geben Sie einen Cloud Storage-URI an, auf den das Pipelines-Dienstkonto zugreifen kann. Die Artefakte Ihrer Pipelineausführungen werden im Pipeline-Stammverzeichnis gespeichert.
Ersetzen Sie in der Datei requirements.txt den Inhalt durch die folgenden Paketanforderungen:
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[],[],null,["# Trigger a pipeline run with Pub/Sub\n\nThis page shows you how to write, deploy, and trigger a pipeline run using an\n[Event-Driven Cloud Function](/functions/docs/writing#event-driven_functions) with a\n[Cloud Pub/Sub trigger](/functions/docs/calling/pubsub). Follow these steps:\n\n1. Define an ML pipeline using the Kubeflow Pipelines (KFP) SDK and compile it into a YAML file.\n\n2. Upload the compiled pipeline definition to a Cloud Storage bucket.\n\n3. Use Cloud Run functions to create, configure, and deploy a function that's\n triggered by a new or existing Pub/Sub topic.\n\n### Define and compile a pipeline\n\nUsing Kubeflow Pipelines SDK, build a scheduled pipeline and\ncompile it into a YAML file.\n\nSample `hello-world-scheduled-pipeline`: \n\n from kfp import compiler\n from kfp import dsl\n\n # A simple component that prints and returns a greeting string\n @dsl.component\n def hello_world(message: str) -\u003e str:\n greeting_str = f'Hello, {message}'\n print(greeting_str)\n return greeting_str\n\n # A simple pipeline that contains a single hello_world task\n @dsl.pipeline(\n name='hello-world-scheduled-pipeline')\n def hello_world_scheduled_pipeline(greet_name: str):\n hello_world_task = hello_world(greet_name)\n\n # Compile the pipeline and generate a YAML file\n compiler.Compiler().compile(pipeline_func=hello_world_scheduled_pipeline,\n package_path='hello_world_scheduled_pipeline.yaml')\n\n### Upload compiled pipeline YAML to Cloud Storage bucket\n\n1. Open the Cloud Storage browser in the Google Cloud console. \n\n [Cloud Storage Browser](https://console.cloud.google.com/storage/browser/)\n2. Click the Cloud Storage bucket you created when you\n [configured your project](/vertex-ai/docs/pipelines/configure-project).\n\n3. Using either an existing folder or a new folder, upload your compiled\n pipeline YAML (in this example `hello_world_scheduled_pipeline.yaml`)\n to the selected folder.\n\n4. Click the uploaded YAML file to access the details. Copy the\n **gsutil URI** for later use.\n\n### Create a Cloud Run functions with a Pub/Sub trigger\n\n1. Visit the Cloud Run functions page in the console.\n\n [Go to the Cloud Run functions page](https://console.cloud.google.com/functions)\n2. Click the **Create function** button.\n\n3. In the **Basics** section, give your function a name (for\n example `my-scheduled-pipeline-function`).\n\n4. In the **Trigger** section, select **Cloud Pub/Sub** as the Trigger type.\n\n5. In the **Select a Cloud Pub/Sub topic** list, click **Create a topic**.\n\n6. In the **Create a topic** box, give your new topic a name\n (for example `my-scheduled-pipeline-topic`), and select **Create topic**.\n\n7. Leave all other fields as default and click **Save** to save the Trigger\n section configuration.\n\n8. Leave all other fields as default and click **Next** to proceed to the Code\n section.\n\n9. Under **Runtime** , select **Python 3.7**.\n\n10. In **Entry** point, input \"subscribe\" (the example code entry point\n function name).\n\n11. Under **Source code** , select **Inline Editor** if it's not already selected.\n\n12. In the `main.py` file, add in the following code:\n\n import base64\n import json\n from google.cloud import aiplatform\n\n PROJECT_ID = '\u003cvar translate=\"no\"\u003eyour-project-id\u003c/var\u003e' # \u003c---CHANGE THIS\n REGION = '\u003cvar translate=\"no\"\u003eyour-region\u003c/var\u003e' # \u003c---CHANGE THIS\n PIPELINE_ROOT = '\u003cvar translate=\"no\"\u003eyour-cloud-storage-pipeline-root\u003c/var\u003e' # \u003c---CHANGE THIS\n\n def subscribe(event, context):\n \"\"\"Triggered from a message on a Cloud Pub/Sub topic.\n Args:\n event (dict): Event payload.\n context (google.cloud.functions.Context): Metadata for the event.\n \"\"\"\n # decode the event payload string\n payload_message = base64.b64decode(event['data']).decode('utf-8')\n # parse payload string into JSON object\n payload_json = json.loads(payload_message)\n # trigger pipeline run with payload\n trigger_pipeline_run(payload_json)\n\n def trigger_pipeline_run(payload_json):\n \"\"\"Triggers a pipeline run\n Args:\n payload_json: expected in the following format:\n {\n \"pipeline_spec_uri\": \"\u003cpath-to-your-compiled-pipeline\u003e\",\n \"parameter_values\": {\n \"greet_name\": \"\u003cany-greet-string\u003e\"\n }\n }\n \"\"\"\n pipeline_spec_uri = payload_json['pipeline_spec_uri']\n parameter_values = payload_json['parameter_values']\n\n # Create a PipelineJob using the compiled pipeline from pipeline_spec_uri\n aiplatform.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.html(\n project=PROJECT_ID,\n location=REGION,\n )\n job = aiplatform.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.types.PipelineJob.html(\n display_name='hello-world-pipeline-cloud-function-invocation',\n template_path=pipeline_spec_uri,\n pipeline_root=PIPELINE_ROOT,\n enable_caching=False,\n parameter_values=parameter_values\n )\n\n # Submit the PipelineJob\n job.submit()\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: The Google Cloud project that this pipeline runs in.\n - \u003cvar translate=\"no\"\u003eREGION\u003c/var\u003e: The region that this pipeline runs in.\n - \u003cvar translate=\"no\"\u003ePIPELINE_ROOT\u003c/var\u003e: Specify a Cloud Storage URI that your pipelines service account can access. The artifacts of your pipeline runs are stored in the pipeline root.\n13. In the `requirements.txt` file, replace the contents with the following package\n requirements:\n\n google-api-python-client\u003e=1.7.8,\u003c2\n google-cloud-aiplatform\n\n14. Click **deploy** to deploy the Function.\n\nWhat's next\n-----------\n\n- Learn more about [Google Cloud Pub/Sub](/pubsub/docs).\n- [Visualize and analyze pipeline results](/vertex-ai/docs/pipelines/visualize-pipeline).\n- Learn how to [create triggers in Cloud Runfrom Pub/Sub events](/functions/docs/calling/pubsub).\n- To view code samples for using Pub/Sub, refer to the [Google Cloud sample browser](/docs/samples?p=pubsub)."]]