Maschinenkonfiguration für einen Pipelineschritt angeben
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Kubeflow-Pipeline-Komponenten sind Factory-Funktionen, die Pipelineschritte erstellen. Jede Komponente beschreibt die Eingaben, Ausgaben und die Implementierung der Komponente. Im folgenden Codebeispiel ist train_op beispielsweise eine Komponente.
Eine Trainingskomponente könnte beispielsweise eine CSV-Datei als Eingabe nehmen und zum Trainieren eines Modells verwenden. Durch Festlegen der Maschinentypparameter für den Pipelineschritt können Sie die Anforderungen jedes Schritts in Ihrer Pipeline verwalten. Wenn Sie zwei Trainingsschritte haben und ein Schritt mit einer großen Datendatei trainiert wird und der zweite Schritt mit einer kleinen Datendatei trainiert wird, können Sie der ersten Aufgabe mehr Arbeitsspeicher und CPU zuweisen und der zweiten Aufgabe weniger Ressourcen.
CPU_LIMIT: Das maximale CPU-Limit für diesen Operator. Dieser Stringwert kann eine Zahl (Ganzzahlwert für die Anzahl der CPUs) oder eine Zahl gefolgt von "m" sein, d. h. 1/1.000. Sie können höchstens 96 CPUs angeben.
MEMORY_LIMIT: Das maximale Speicherlimit für diesen Operator. Dieser Stringwert kann eine Zahl sein oder eine Zahl gefolgt von "K" (Kilobyte), "M" (Megabyte) oder "G" (Gigabyte).
Es werden maximal 624 GB unterstützt.
SELECTOR_CONSTRAINT: Jede Einschränkung ist ein Schlüssel/Wert-Paar-Label.
Damit der Container auf einem Knoten ausgeführt werden kann, muss für den Knoten jede Einschränkung als Label angezeigt werden. Zum Beispiel:
'cloud.google.com/gke-accelerator', 'NVIDIA_TESLA_T4'
ACCELERATOR_LIMIT: Das Beschleunigerlimit (GPU oder TPU) für den Operator. Sie können eine positive Ganzzahl angeben. Weitere Informationen zu den verfügbaren GPUs und deren Konfiguration finden Sie unter GPUs. Weitere Informationen zu den verfügbaren TPUs und zu ihrer Konfiguration finden Sie unter TPUs.
CustomJob unterstützt derzeit bestimmte Maschinentypen, die auf maximal 96 CPUs und 624 GB Arbeitsspeicher beschränkt sind. Anhand der von Ihnen angegebenen CPU-, Arbeitsspeicher- und Beschleunigerkonfiguration wählt Vertex AI Pipelines automatisch den am besten passenden der unterstützten Maschinentypen aus.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[],[],null,["# Specify the machine configuration for a pipeline step\n\nKubeflow pipeline components are factory functions that create pipeline\nsteps. Each component describes the inputs, outputs, and implementation of the\ncomponent. For example, `train_op` is a component in the following code sample.\n\nFor example, a training component could take a CSV file as an input and use it\nto train a model. By setting the machine type parameters on the pipeline step,\nyou can manage the requirements of each step in your pipeline. If you have two\ntraining steps and one step trains on a huge data file and the second step\ntrains on a small data file, you can allocate more memory and CPU to the first\ntask, and fewer resources to the second task.\n\nBy default, the component will run on as a Vertex AI\n[`CustomJob`](/vertex-ai/docs/reference/rest/v1/projects.locations.customJobs)\nusing an **e2-standard-4** machine, with 4 core CPUs and 16GB memory. For more information about selecting one of the Google Cloud-specific machine resources listed in [Machine types](/vertex-ai/docs/training/configure-compute#machine-types), see [Request Google Cloud machine resources with Vertex AI Pipelines](/vertex-ai/docs/pipelines/request-gcp-machine-resources).\n\nThe following sample shows you how to set CPU, memory, and GPU configuration\nsettings for a step:\n**Note:** If you want to specify the disk space in the machine configuration, you must [create a custom training job from a component by requesting Google Cloud machine resources](/vertex-ai/docs/pipelines/request-gcp-machine-resources#create-customtrainingjob-from-component) instead. \n\n from kfp import dsl\n\n @dsl.pipeline(name='custom-container-pipeline')\n def pipeline():\n generate = generate_op()\n train = (\n train_op(\n training_data=generate.outputs['training_data'],\n test_data=generate.outputs['test_data'],\n config_file=generate.outputs['config_file'])\n .set_cpu_limit('\u003cvar translate=\"no\"\u003eCPU_LIMIT\u003c/var\u003e')\n .set_memory_limit('\u003cvar translate=\"no\"\u003eMEMORY_LIMIT\u003c/var\u003e')\n .add_node_selector_constraint(\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003eSELECTOR_CONSTRAINT\u003c/span\u003e\u003c/var\u003e)\n .set_accelerator_limit(\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003eACCELERATOR_LIMIT\u003c/span\u003e\u003c/var\u003e))\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003eCPU_LIMIT\u003c/var\u003e: The maximum CPU limit for this operator. This string\n value can be a number (integer value for number of CPUs), or a number\n followed by \"m\", which means 1/1000. You can specify at most 96 CPUs.\n\n- \u003cvar translate=\"no\"\u003eMEMORY_LIMIT\u003c/var\u003e: The maximum memory limit for this operator. This\n string value can be a number, or a number followed by\n \"K\" (kilobyte), \"M\" (megabyte), or \"G\" (gigabyte).\n At most 624GB is supported.\n\n | **Note:** Vertex AI Pipelines does not support calling [`set_memory_request`](https://kubeflow-pipelines.readthedocs.io/page/source/dsl.html#kfp.dsl.PipelineTask.set_memory_request) on an operator ; you must use [`set_memory_limit`](https://kubeflow-pipelines.readthedocs.io/page/source/dsl.html#kfp.dsl.PipelineTask.set_memory_request) to request a specific memory amount.\n- \u003cvar translate=\"no\"\u003eSELECTOR_CONSTRAINT\u003c/var\u003e: Each constraint is a key-value pair label.\n For the container to be eligible to run on a node, the node must have each\n constraint as a label. For example:\n `'cloud.google.com/gke-accelerator', 'NVIDIA_TESLA_T4'`\n\n The following constraints are available:\n - `NVIDIA_GB200`^+^ (includes [GPUDirect-RDMA](/vertex-ai/docs/training/configure-compute#gpudirect-rdma))\n - `NVIDIA_B200`^\\*^ (includes [GPUDirect-RDMA](/vertex-ai/docs/training/configure-compute#gpudirect-rdma))\n - `NVIDIA_H100_MEGA_80GB`^\\*^ (includes [GPUDirect-TCPXO](/vertex-ai/docs/training/configure-compute#gpudirect-tcpxo))\n - `NVIDIA_H100_80GB`\n - `NVIDIA_H200_141GB`^\\*^ (includes [GPUDirect-RDMA](/vertex-ai/docs/training/configure-compute#gpudirect-rdma))\n - `NVIDIA_A100_80GB`\n - `NVIDIA_TESLA_A100` (NVIDIA A100 40GB)\n - `NVIDIA_TESLA_P4`\n - `NVIDIA_TESLA_P100`\n - `NVIDIA_TESLA_T4`\n - `NVIDIA_TESLA_V100`\n - `NVIDIA_L4`\n\n \u003cbr /\u003e\n\n - `TPU_V2`\n - `TPU_V3`\n- \u003cvar translate=\"no\"\u003eACCELERATOR_LIMIT\u003c/var\u003e: The accelerator (GPU or TPU) limit for the\n operator. You can specify a positive integer. For more information about the\n available GPUs and how to configure them, see\n [GPUs](/vertex-ai/docs/training/configure-compute#specifying_gpus). For more information\n about the available TPUs and how to configure them, see\n [TPUs](/vertex-ai/docs/training/configure-compute#tpu).\n\n | **Note:** TPUs are only available in specific locations. For more information, see [Using accelerators](/vertex-ai/docs/general/locations#accelerators).\n\n`CustomJob` supports specific machine types that limit you to a maximum of 96 CPUs and 624GB of memory. Based on the CPU, memory, and accelerator configuration that you specify, Vertex AI Pipelines automatically selects the closest match from the supported machine types."]]