Realizar a detecção de anomalias com um modelo de previsão de série temporal multivariável
Este tutorial mostra como fazer as seguintes tarefas:
- Crie um
modelo de previsão de série temporal
ARIMA_PLUS_XREG
. - Detecte anomalias nos dados da série temporal executando a
função
ML.DETECT_ANOMALIES
no modelo.
Neste tutorial, usamos as seguintes tabelas do conjunto de dados público epa_historical_air_quality
, que contém informações diárias de PM2,5, temperatura e velocidade do vento coletadas de várias cidades dos EUA:
epa_historical_air_quality.pm25_nonfrm_daily_summary
epa_historical_air_quality.wind_daily_summary
epa_historical_air_quality.temperature_daily_summary
Permissões necessárias
- Para criar o conjunto de dados, é preciso ter a permissão de IAM
bigquery.datasets.create
. Para criar o recurso de conexão, você precisa das seguintes permissões:
bigquery.connections.create
bigquery.connections.get
Para criar o modelo, você precisa das seguintes permissões:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.connections.delegate
Para executar a inferência, você precisa das seguintes permissões:
bigquery.models.getData
bigquery.jobs.create
Para mais informações sobre os papéis e as permissões do IAM no BigQuery, consulte Introdução ao IAM.
Custos
Neste documento, você usará os seguintes componentes faturáveis do Google Cloud:
- BigQuery: You incur costs for the data you process in BigQuery.
Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços.
Para saber mais, acesse a página Preços do BigQuery.
Antes de começar
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
Criar um conjunto de dados
Crie um conjunto de dados do BigQuery para armazenar o modelo de ML:
No console do Google Cloud, acesse a página do BigQuery.
No painel Explorer, clique no nome do seu projeto.
Clique em
Conferir ações > Criar conjunto de dados.Na página Criar conjunto de dados, faça o seguinte:
Para o código do conjunto de dados, insira
bqml_tutorial
.Em Tipo de local, selecione Multirregião e EUA (várias regiões nos Estados Unidos).
Os conjuntos de dados públicos são armazenados na multirregião
US
. Para simplificar, armazene seus conjuntos de dados no mesmo local.Mantenha as configurações padrão restantes e clique em Criar conjunto de dados.
Preparar os dados de treinamento
Os dados de PM 2.5, temperatura e velocidade do vento estão em tabelas separadas.
Crie a tabela bqml_tutorial.seattle_air_quality_daily
de dados de treinamento combinando os dados nessas tabelas públicas.
bqml_tutorial.seattle_air_quality_daily
contém as seguintes colunas:
date
: a data da observação.PM2.5
: o valor médio de PM2,5 para cada diawind_speed
: a velocidade média do vento para cada diatemperature
: a temperatura mais alta de cada dia
A nova tabela tem dados diários de 11 de agosto de 2009 a 31 de janeiro de 2022.
Acessar a página do BigQuery.
No painel Editor SQL, execute a seguinte instrução SQL:
CREATE TABLE `bqml_tutorial.seattle_air_quality_daily` AS WITH pm25_daily AS ( SELECT avg(arithmetic_mean) AS pm25, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass' GROUP BY date_local ), wind_speed_daily AS ( SELECT avg(arithmetic_mean) AS wind_speed, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.wind_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant' GROUP BY date_local ), temperature_daily AS ( SELECT avg(first_max_value) AS temperature, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature' GROUP BY date_local ) SELECT pm25_daily.date AS date, pm25, wind_speed, temperature FROM pm25_daily JOIN wind_speed_daily USING (date) JOIN temperature_daily USING (date)
Criar o modelo
Crie um modelo de série temporal multivariável usando os dados de bqml_tutorial.seattle_air_quality_daily
como dados de treinamento.
Acessar a página do BigQuery.
No painel Editor SQL, execute a seguinte instrução SQL:
CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model` OPTIONS ( model_type = 'ARIMA_PLUS_XREG', auto_arima=TRUE, time_series_data_col = 'temperature', time_series_timestamp_col = 'date' ) AS SELECT * FROM `bqml_tutorial.seattle_air_quality_daily`;
A consulta leva alguns segundos para ser concluída. Depois disso, o modelo
arimax_model
aparece no conjunto de dadosbqml_tutorial
no painel Explorer.Como a consulta usa uma instrução
CREATE MODEL
para criar um modelo, não há resultados de consulta.
Realizar detecção de anomalias em dados históricos
Execute a detecção de anomalias nos dados históricos usados para treinar o modelo.
Acessar a página do BigQuery.
No painel Editor SQL, execute a seguinte instrução SQL:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold) ) ORDER BY date ASC;
Os resultados são semelhantes aos seguintes:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-11 00:00:00 UTC | 70.1 | false | 67.65880237416745 | 72.541197625832538 | 0 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-12 00:00:00 UTC | 73.4 | false | 71.715603233887791 | 76.597998485552878 | 0.20589853827304627 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-13 00:00:00 UTC | 64.6 | true | 67.741606808079425 | 72.624002059744512 | 0.94627126678202522 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
Realizar detecção de anomalias em dados novos
Execute a detecção de anomalias nos novos dados gerados.
Acessar a página do BigQuery.
No painel Editor SQL, execute a seguinte instrução SQL:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold), ( SELECT * FROM UNNEST( [ STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64> ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0), ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5), ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5), ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0), ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0), ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5), ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5), ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5), ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5), ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5) ] ) ) );
Os resultados são semelhantes aos seguintes:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | pm25 | wind_speed | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-01 00:00:00 UTC | 44.0 | true | 36.917405956304407 | 41.79980120796948 | 0.890904731626234 | 8.8166665 | 1.6525 | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-02 00:00:00 UTC | 40.5 | false | 34.622436643607685 | 40.884690866417984 | 0.53985850962605064 | 11.8354165 | 1.558333 | +--------------------------------------------------------------------------------------------------------------------+-------------------------+ | 2023-02-03 00:00:00 UTC | 46.5 | true | 33.769587937313183 | 40.7478502941026 | 0.97434506593220793 | 10.1395835 | 1.6895835 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
Limpar
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.