Detectar anomalías con un modelo de previsión de series temporales multivariante
En este tutorial se explica cómo hacer lo siguiente:
- Crea un
ARIMA_PLUS_XREG
modelo de previsión de series temporales. - Detecta anomalías en los datos de series temporales ejecutando la función
ML.DETECT_ANOMALIES
en el modelo.
En este tutorial se usan las siguientes tablas del conjunto de datos público
epa_historical_air_quality
, que contiene información diaria sobre PM 2, 5, temperatura
y velocidad del viento recogida en varias ciudades de EE. UU.:
epa_historical_air_quality.pm25_nonfrm_daily_summary
epa_historical_air_quality.wind_daily_summary
epa_historical_air_quality.temperature_daily_summary
Permisos obligatorios
Para crear el conjunto de datos, necesitas el permiso
bigquery.datasets.create
de gestión de identidades y accesos.Para crear el modelo, necesitas los siguientes permisos:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
Para ejecutar la inferencia, necesitas los siguientes permisos:
bigquery.models.getData
bigquery.jobs.create
Para obtener más información sobre los roles y permisos de gestión de identidades y accesos en BigQuery, consulta la introducción a la gestión de identidades y accesos.
Costes
En este documento, se utilizan los siguientes componentes facturables de Google Cloud:
- BigQuery: You incur costs for the data you process in BigQuery.
Para generar una estimación de costes basada en el uso previsto,
utiliza la calculadora de precios.
Para obtener más información, consulta los precios de BigQuery.
Antes de empezar
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. En la Google Cloud consola, ve a la página BigQuery.
En el panel Explorador, haz clic en el nombre de tu proyecto.
Haga clic en
Ver acciones > Crear conjunto de datos.En la página Crear conjunto de datos, haz lo siguiente:
En ID del conjunto de datos, introduce
bqml_tutorial
.En Tipo de ubicación, selecciona Multirregión y, a continuación, EE. UU. (varias regiones de Estados Unidos).
Deje el resto de los ajustes predeterminados como están y haga clic en Crear conjunto de datos.
Crea un conjunto de datos llamado
bqml_tutorial
con la ubicación de los datos definida comoUS
y la descripciónBigQuery ML tutorial dataset
:bq --location=US mk -d \ --description "BigQuery ML tutorial dataset." \ bqml_tutorial
En lugar de usar la marca
--dataset
, el comando usa el acceso directo-d
. Si omite-d
y--dataset
, el comando creará un conjunto de datos de forma predeterminada.Confirma que se ha creado el conjunto de datos:
bq ls
date
: la fecha de la observaciónPM2.5
: el valor medio de PM2,5 de cada díawind_speed
: la velocidad media del viento de cada díatemperature
: la temperatura más alta de cada díaVe a la página BigQuery.
En el panel del editor de SQL, ejecuta la siguiente instrucción SQL:
CREATE TABLE `bqml_tutorial.seattle_air_quality_daily` AS WITH pm25_daily AS ( SELECT avg(arithmetic_mean) AS pm25, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass' GROUP BY date_local ), wind_speed_daily AS ( SELECT avg(arithmetic_mean) AS wind_speed, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.wind_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant' GROUP BY date_local ), temperature_daily AS ( SELECT avg(first_max_value) AS temperature, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature' GROUP BY date_local ) SELECT pm25_daily.date AS date, pm25, wind_speed, temperature FROM pm25_daily JOIN wind_speed_daily USING (date) JOIN temperature_daily USING (date)
Ve a la página BigQuery.
En el panel del editor de SQL, ejecuta la siguiente instrucción SQL:
CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model` OPTIONS ( model_type = 'ARIMA_PLUS_XREG', auto_arima=TRUE, time_series_data_col = 'temperature', time_series_timestamp_col = 'date' ) AS SELECT * FROM `bqml_tutorial.seattle_air_quality_daily` WHERE date < "2023-02-01";
La consulta tarda varios segundos en completarse. Después, el modelo
arimax_model
aparece en el conjunto de datosbqml_tutorial
del panel Explorador.Como la consulta usa una instrucción
CREATE MODEL
para crear un modelo, no hay resultados de la consulta.Ve a la página BigQuery.
En el panel del editor de SQL, ejecuta la siguiente instrucción SQL:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold) ) ORDER BY date ASC;
Los resultados deberían ser similares a los siguientes:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-11 00:00:00 UTC | 70.1 | false | 67.647370742988727 | 72.552629257011262 | 0 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-12 00:00:00 UTC | 73.4 | false | 71.7035428351283 | 76.608801349150838 | 0.20478819992561115 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-13 00:00:00 UTC | 64.6 | true | 67.740408724826068 | 72.6456672388486 | 0.945588334903206 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
Ve a la página BigQuery.
En el panel del editor de SQL, ejecuta la siguiente instrucción SQL:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold), ( SELECT * FROM UNNEST( [ STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64> ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0), ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5), ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5), ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0), ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0), ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5), ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5), ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5), ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5), ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5) ] ) ) );
Los resultados deberían ser similares a los siguientes:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | pm25 | wind_speed | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-01 00:00:00 UTC | 44.0 | true | 36.89918003713138 | 41.8044385511539 | 0.88975675709801583 | 8.8166665 | 1.6525 | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-02 00:00:00 UTC | 40.5 | false | 34.439946284051572 | 40.672021330796483 | 0.57358239699845348 | 11.8354165 | 1.558333 | +--------------------------------------------------------------------------------------------------------------------+-------------------------+ | 2023-02-03 00:00:00 UTC | 46.5 | true | 33.615139992931191 | 40.501364463964549 | 0.97902867696346974 | 10.1395835 | 1.6895835 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
Crear conjunto de datos
Crea un conjunto de datos de BigQuery para almacenar tu modelo de aprendizaje automático.
Consola
bq
Para crear un conjunto de datos, usa el comando
bq mk
con la marca --location
. Para ver una lista completa de los parámetros posibles, consulta la referencia del comando bq mk --dataset
.
API
Llama al método datasets.insert
con un recurso de conjunto de datos definido.
{ "datasetReference": { "datasetId": "bqml_tutorial" } }
BigQuery DataFrames
Antes de probar este ejemplo, sigue las instrucciones de configuración de BigQuery DataFrames que se indican en la guía de inicio rápido de BigQuery con BigQuery DataFrames. Para obtener más información, consulta la documentación de referencia de los DataFrames de BigQuery.
Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta Configurar ADC en un entorno de desarrollo local.
Preparar los datos de entrenamiento
Los datos de PM2, 5, temperatura y velocidad del viento se encuentran en tablas independientes.
Crea la tabla bqml_tutorial.seattle_air_quality_daily
de datos de entrenamiento
combinando los datos de estas tablas públicas.
bqml_tutorial.seattle_air_quality_daily
contiene las siguientes columnas:
La nueva tabla contiene datos diarios desde el 11 de agosto del 2009 hasta el 31 de enero del 2022.
Crear el modelo
Crea un modelo de serie temporal multivariante con los datos de
bqml_tutorial.seattle_air_quality_daily
como datos de entrenamiento.
Detectar anomalías en el historial de datos
Ejecuta la detección de anomalías en el historial de datos que has usado para entrenar el modelo.
Realizar la detección de anomalías en datos nuevos
Ejecuta la detección de anomalías en los nuevos datos que generes.