Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Présentation des analyses géospatiales
Dans un entrepôt de données tel que BigQuery, les informations de localisation sont courantes et peuvent influencer des décisions commerciales critiques. Vous pouvez utiliser les analyses géospatiales pour analyser et visualiser des données géospatiales dans BigQuery en utilisant le type de données GEOGRAPHY et les fonctions de géographie GoogleSQL.
Par exemple, vous pouvez enregistrer la latitude et la longitude de vos véhicules de livraison ou de vos colis sur une période donnée. Vous pouvez également enregistrer des transactions client et associer les données à une autre table contenant les données de localisation du magasin. Vous pouvez utiliser ce type de données de localisation pour effectuer les opérations suivantes :
Estimer la date de livraison d'un colis
Déterminez à quels clients il convient d'adresser un courrier promotionnel pour un emplacement de magasin particulier.
Combinez vos données avec le pourcentage de couverture arborée issu des images satellite pour déterminer si la livraison par drone aérien est possible.
Limites
Les analyses géospatiales sont soumises aux limites suivantes :
Seule la bibliothèque cliente BigQuery pour Python accepte le type de données GEOGRAPHY. Pour les autres bibliothèques clientes, convertissez les valeurs GEOGRAPHY en chaînes à l'aide de la fonction ST_ASTEXT ou ST_ASGEOJSON.
La conversion en texte à l'aide de ST_ASTEXT ne stocke qu'une seule valeur, et la conversion au format WKT signifie que les données sont annotées en tant que type STRING au lieu de type GEOGRAPHY.
Quotas
Les quotas et les limites des analyses géospatiales s'appliquent aux différents types de tâches que vous pouvez exécuter sur des tables contenant des données géospatiales, y compris aux types de tâches suivants :
De nombreuses opérations de table sont gratuites, y compris le chargement de données, la copie de tables et l'exportation de données. Bien que gratuites, ces opérations sont soumises aux quotas et limites propres à BigQuery. Pour en savoir plus sur toutes les opérations gratuites, consultez la section Opérations gratuites sur la page des tarifs.
Pour en savoir plus sur les ensembles de données géospatiales, les analyses géospatiales et l'IA, consultez Analyses géospatiales.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[[["\u003cp\u003eGeospatial analytics in BigQuery allows for the analysis and visualization of location data, utilizing geography data types and GoogleSQL geography functions.\u003c/p\u003e\n"],["\u003cp\u003eLocation data, such as latitude and longitude, is commonly used in data warehouses to inform critical business decisions, like delivery times or targeted marketing.\u003c/p\u003e\n"],["\u003cp\u003eGeospatial analytics has some limitations, including being exclusively available in GoogleSQL and with the BigQuery client library for Python being the only one to directly support the \u003ccode\u003eGEOGRAPHY\u003c/code\u003e data type.\u003c/p\u003e\n"],["\u003cp\u003eThe use of geospatial analytics in BigQuery incurs costs based on data storage and query execution, with certain operations like loading, copying, and exporting data being free, but still subject to quotas and limits.\u003c/p\u003e\n"],["\u003cp\u003eSeveral resources are available for those wishing to learn more, including getting started guides, visualization options, and information on working with geospatial data and GoogleSQL functions.\u003c/p\u003e\n"]]],[],null,["# Introduction to geospatial analytics\n====================================\n\nIn a data warehouse like BigQuery, location information is\ncommon and can influence critical business decisions. You can use geospatial\nanalytics to analyze and visualize geospatial data in BigQuery\nby using the\n[`GEOGRAPHY` data type](/bigquery/docs/reference/standard-sql/data-types#geography_type)\nand\n[GoogleSQL geography functions](/bigquery/docs/reference/standard-sql/geography_functions).\n\nFor example, you might record the latitude and longitude of your delivery\nvehicles or packages over time. You might also record customer transactions and\njoin the data to another table with store location data. You can use this type\nof location data to do the following:\n\n- Estimate when a package is likely to arrive.\n- Determine which customers should receive a mailer for a particular store location.\n- Combine your data with percent tree cover from satellite imagery to decide if delivery by aerial drone is feasible.\n\nLimitations\n-----------\n\nGeospatial analytics is subject to the following limitations:\n\n- [Geography functions](/bigquery/docs/reference/standard-sql/geography_functions) are available only in GoogleSQL.\n- Only the BigQuery client library for Python supports the `GEOGRAPHY` data type. For other client libraries, convert `GEOGRAPHY` values to strings by using the `ST_ASTEXT` or `ST_ASGEOJSON` function. Converting to text using `ST_ASTEXT` stores only one value, and converting to WKT means that the data is annotated as a `STRING` type instead of a `GEOGRAPHY` type.\n\nQuotas\n------\n\nQuotas and limits on geospatial analytics apply to the different types of\njobs you can run against tables that contain geospatial data, including the\nfollowing job types:\n\n- [Loading data](/bigquery/quotas#load_jobs) (load jobs)\n- [Exporting data](/bigquery/quotas#export_jobs) (export jobs)\n- [Querying data](/bigquery/quotas#query_jobs) (query jobs)\n- [Copying tables](/bigquery/quotas#copy_jobs) (copy jobs)\n\nFor more information on all quotas and limits, see [Quotas and limits](/bigquery/quotas).\n\nPricing\n-------\n\nWhen you use geospatial analytics, your charges are based on the\nfollowing factors:\n\n- How much data is stored in the tables that contain geospatial data\n- The queries you run against the data\n\nFor information on storage pricing, see [Storage pricing](/bigquery/pricing#storage).\n\nFor information on query pricing, see [Analysis pricing models](/bigquery/pricing#analysis_pricing_models).\n\nMany table operations are free, including loading data, copying tables, and\nexporting data. Though free, these operations are subject to\nBigQuery's [Quotas and limits](/bigquery/quotas). For information\non all free operations, see [Free operations](/bigquery/pricing#free) on the\npricing page.\n\nWhat's next\n-----------\n\n- To get started with geospatial analytics, see [Get started with geospatial analytics](/bigquery/docs/geospatial-get-started).\n- To learn more about visualization options for geospatial analytics, see [Visualize geospatial data](/bigquery/docs/geospatial-visualize).\n- To learn more about working with geospatial data, see [Work with geospatial data](/bigquery/docs/geospatial-data).\n- To learn more about working with raster data, see [Work with raster data](/bigquery/docs/raster-data).\n- To learn more about incorporating Google Earth Engine geospatial data into BigQuery, see [Load Google Earth Engine geospatial data](/bigquery/docs/geospatial-data#load-ee).\n- For documentation on GoogleSQL functions in geospatial analytics, see [Geography functions in GoogleSQL](/bigquery/docs/reference/standard-sql/geography_functions).\n- To learn about different grid systems, see [Grid systems for spatial analysis](/bigquery/docs/grid-systems-spatial-analysis).\n- To learn more about geospatial datasets and geospatial analytics and AI, see [Geospatial Analytics](/solutions/geospatial)."]]