导出 BigQuery ML 模型以进行在线预测


本教程介绍如何导出 BigQuery ML 模型,然后在 AI Platform 或本地机器上部署该模型。您将使用 BigQuery 公共数据集中的 iris,并完成以下三个端到端场景:

  • 训练和部署逻辑回归模型 - 也适用于 DNN 分类器、DNN 回归器、k-means、线性回归和矩阵分解模型。
  • 训练和部署提升树分类器模型 - 也适用于提升树回归器模型。
  • 训练和部署 AutoML 分类器模型 - 也适用于 AutoML 回归器模型。

费用

本教程使用 Google Cloud 的计费组件,包括:

  • BigQuery ML
  • Cloud Storage
  • AI Platform(可选,用于在线预测)

如需详细了解 BigQuery ML 费用,请参阅 BigQuery ML 价格

如需详细了解 Cloud Storage 费用,请参阅 Cloud Storage 价格页面。

如需详细了解 AI Platform 费用,请参阅预测节点和资源分配页面。

准备工作

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. 新项目会自动启用 BigQuery。如需在现有项目中激活 BigQuery,请前往

    Enable the BigQuery API.

    Enable the API

  7. Enable the AI Platform Training and Prediction API and Compute Engine APIs.

    Enable the APIs

  8. 安装 Google Cloud CLIGoogle Cloud CLI

创建数据集

创建 BigQuery 数据集以存储您的机器学习模型:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery 页面

  2. 探索器窗格中,点击您的项目名称。

  3. 点击 查看操作 > 创建数据集

    创建数据集。

  4. 创建数据集页面上,执行以下操作:

    • 数据集 ID 部分,输入 bqml_tutorial

    • 位置类型部分,选择多区域,然后选择 US (multiple regions in United States)(美国[美国的多个区域])。

      公共数据集存储在 US 多区域中。为简单起见,请将数据集存储在同一位置。

    • 保持其余默认设置不变,然后点击创建数据集

      创建数据集页面。

训练和部署逻辑回归模型

训练模型

使用 BigQuery ML CREATE MODEL 语句训练一个预测鸢尾花类型的逻辑回归模型。此训练作业大约需要 1 分钟才能完成。

bq query --use_legacy_sql=false \
  'CREATE MODEL `bqml_tutorial.iris_model`
  OPTIONS (model_type="logistic_reg",
      max_iterations=10, input_label_cols=["species"])
  AS SELECT
    *
  FROM
    `bigquery-public-data.ml_datasets.iris`;'

导出模型

使用 bq 命令行工具将模型导出到 Cloud Storage 存储桶。如需了解导出模型的其他方法,请参阅导出 BigQuery ML 模型。此提取作业应在 1 分钟内完成。

bq extract -m bqml_tutorial.iris_model gs://some/gcs/path/iris_model

本地部署和服务

您可以使用 TensorFlow Serving Docker 容器部署导出的 TensorFlow 模型。以下步骤要求您安装 Docker

将导出的模型文件下载到临时目录

mkdir tmp_dir
gcloud storage cp gs://some/gcs/path/iris_model tmp_dir --recursive

创建版本子目录

此步骤为模型设置版本号(在本例中为 1)。

mkdir -p serving_dir/iris_model/1
cp -r tmp_dir/iris_model/* serving_dir/iris_model/1
rm -r tmp_dir

拉取 Docker 映像

docker pull tensorflow/serving

运行 Docker 容器

docker run -p 8500:8500 --network="host" --mount type=bind,source=`pwd`/serving_dir/iris_model,target=/models/iris_model -e MODEL_NAME=iris_model -t tensorflow/serving &

运行预测

curl -d '{"instances": [{"sepal_length":5.0, "sepal_width":2.0, "petal_length":3.5, "petal_width":1.0}]}' -X POST http://localhost:8501/v1/models/iris_model:predict

在线部署和服务

本部分使用 Google Cloud CLI 针对导出的模型进行部署并运行预测。

如需详细了解如何将模型部署到 AI Platform 以进行在线/批量预测,请参阅部署模型

创建模型资源

MODEL_NAME="IRIS_MODEL"
gcloud ai-platform models create $MODEL_NAME

创建模型版本

1) 设置环境变量:

MODEL_DIR="gs://some/gcs/path/iris_model"
// Select a suitable version for this model
VERSION_NAME="v1"
FRAMEWORK="TENSORFLOW"

2) 创建版本:

gcloud ai-platform versions create $VERSION_NAME --model=$MODEL_NAME --origin=$MODEL_DIR --runtime-version=1.15 --framework=$FRAMEWORK

此步骤可能需要几分钟才能完成。您应该会看到如下消息:Creating version (this might take a few minutes)......

3)(可选)获取有关新版本的信息

gcloud ai-platform versions describe $VERSION_NAME --model $MODEL_NAME

您应该会看到如下所示的输出:

createTime: '2020-02-28T16:30:45Z'
deploymentUri: gs://your_bucket_name
framework: TENSORFLOW
machineType: mls1-c1-m2
name: projects/[YOUR-PROJECT-ID]/models/IRIS_MODEL/versions/v1
pythonVersion: '2.7'
runtimeVersion: '1.15'
state: READY

在线预测

如需详细了解如何对已部署的模型运行在线预测,请参阅请求预测

1) 为输入创建以换行符分隔的 JSON 文件,例如 instances.json 文件,其中包含以下内容:

{"sepal_length":5.0, "sepal_width":2.0, "petal_length":3.5, "petal_width":1.0}
{"sepal_length":5.3, "sepal_width":3.7, "petal_length":1.5, "petal_width":0.2}

2) 设置用于预测的环境变量:

INPUT_DATA_FILE="instances.json"

3) 运行预测:

gcloud ai-platform predict --model $MODEL_NAME --version $VERSION_NAME --json-instances $INPUT_DATA_FILE

训练和部署提升树分类器模型

训练模型

使用 CREATE MODEL 语句训练一个预测鸢尾花类型的提升树分类器模型。此训练作业大约需要 7 分钟才能完成。

bq query --use_legacy_sql=false \
  'CREATE MODEL `bqml_tutorial.boosted_tree_iris_model`
  OPTIONS (model_type="boosted_tree_classifier",
      max_iterations=10, input_label_cols=["species"])
  AS SELECT
    *
  FROM
    `bigquery-public-data.ml_datasets.iris`;'

导出模型

使用 bq 命令行工具将模型导出到 Cloud Storage 存储桶。如需了解导出模型的其他方法,请参阅导出 BigQuery ML 模型

bq extract --destination_format ML_XGBOOST_BOOSTER -m bqml_tutorial.boosted_tree_iris_model gs://some/gcs/path/boosted_tree_iris_model

本地部署和服务

在导出的文件中,有一个用于本地运行的 main.py 文件。

将导出的模型文件下载到本地目录

mkdir serving_dir
gcloud storage cp gs://some/gcs/path/boosted_tree_iris_model serving_dir --recursive

提取预测器

tar -xvf serving_dir/boosted_tree_iris_model/xgboost_predictor-0.1.tar.gz -C serving_dir/boosted_tree_iris_model/

安装 XGBoost 库

安装 XGBoost 库 - 0.82 或更高版本。

运行预测

cd serving_dir/boosted_tree_iris_model/
python main.py '[{"sepal_length":5.0, "sepal_width":2.0, "petal_length":3.5, "petal_width":1.0}]'

在线部署和服务

本部分使用 Google Cloud CLI 针对 AI Platform 在线预测中的导出模型部署并运行预测。

如需详细了解如何使用自定义例程将模型部署到 AI Platform 以进行在线/批量预测,请参阅部署模型

创建模型资源

MODEL_NAME="BOOSTED_TREE_IRIS_MODEL"
gcloud ai-platform models create $MODEL_NAME

创建模型版本

1) 设置环境变量:

MODEL_DIR="gs://some/gcs/path/boosted_tree_iris_model"
VERSION_NAME="v1"

2) 创建版本:

gcloud beta ai-platform versions create $VERSION_NAME --model=$MODEL_NAME --origin=$MODEL_DIR --package-uris=${MODEL_DIR}/xgboost_predictor-0.1.tar.gz --prediction-class=predictor.Predictor --runtime-version=1.15

此步骤可能需要几分钟才能完成。您应该会看到如下消息:Creating version (this might take a few minutes)......

3)(可选)获取有关新版本的信息

gcloud ai-platform versions describe $VERSION_NAME --model $MODEL_NAME

您应该会看到如下所示的输出:

createTime: '2020-02-07T00:35:42Z'
deploymentUri: gs://some/gcs/path/boosted_tree_iris_model
etag: rp090ebEnQk=
machineType: mls1-c1-m2
name: projects/[YOUR-PROJECT-ID]/models/BOOSTED_TREE_IRIS_MODEL/versions/v1
packageUris:
- gs://some/gcs/path/boosted_tree_iris_model/xgboost_predictor-0.1.tar.gz
predictionClass: predictor.Predictor
pythonVersion: '2.7'
runtimeVersion: '1.15'
state: READY

在线预测

如需详细了解如何对已部署的模型运行在线预测,请参阅请求预测

1) 为输入创建以换行符分隔的 JSON 文件,例如 instances.json 文件,其中包含以下内容:

{"sepal_length":5.0, "sepal_width":2.0, "petal_length":3.5, "petal_width":1.0}
{"sepal_length":5.3, "sepal_width":3.7, "petal_length":1.5, "petal_width":0.2}

2) 为预测设置环境变量:

INPUT_DATA_FILE="instances.json"

3) 运行预测:

gcloud ai-platform predict --model $MODEL_NAME --version $VERSION_NAME --json-instances $INPUT_DATA_FILE

训练和部署 AutoML 分类器模型

训练模型

使用 CREATE MODEL 语句训练一个预测鸢尾花类型的 AutoML 分类器模型。AutoML 模型至少需要 1,000 行输入数据。由于 ml_datasets.iris 只有 150 行,因此我们将数据复制 10 次。此训练作业大约需要 2 小时才能完成。

bq query --use_legacy_sql=false \
  'CREATE MODEL `bqml_tutorial.automl_iris_model`
  OPTIONS (model_type="automl_classifier",
      budget_hours=1, input_label_cols=["species"])
  AS SELECT
    * EXCEPT(multiplier)
  FROM
    `bigquery-public-data.ml_datasets.iris`, unnest(GENERATE_ARRAY(1, 10)) as multiplier;'

导出模型

使用 bq 命令行工具将模型导出到 Cloud Storage 存储桶。如需了解导出模型的额外方法,请参阅导出 BigQuery ML 模型

bq extract -m bqml_tutorial.automl_iris_model gs://some/gcs/path/automl_iris_model

本地部署和服务

如需详细了解如何构建 AutoML 容器,请参阅导出模型。以下步骤要求您安装 Docker

将导出的模型文件复制到本地目录

mkdir automl_serving_dir
gcloud storage cp gs://some/gcs/path/automl_iris_model/* automl_serving_dir/ --recursive

拉取 AutoML Docker 映像

docker pull gcr.io/cloud-automl-tables-public/model_server

启动 Docker 容器

docker run -v `pwd`/automl_serving_dir:/models/default/0000001 -p 8080:8080 -it gcr.io/cloud-automl-tables-public/model_server

运行预测

1) 为输入创建以换行符分隔的 JSON 文件,例如 input.json 文件,其中包含以下内容:

{"instances": [{"sepal_length":5.0, "sepal_width":2.0, "petal_length":3.5, "petal_width":1.0},
{"sepal_length":5.3, "sepal_width":3.7, "petal_length":1.5, "petal_width":0.2}]}

2) 进行预测调用:

curl -X POST --data @input.json http://localhost:8080/predict

在线部署和服务

AI Platform 不支持 AutoML 回归器和 AutoML 分类器模型的在线预测。

清理

为避免因本教程中使用的资源导致您的 Google Cloud 账号产生费用,请删除包含这些资源的项目,或者保留项目但删除各个资源。

  • 删除您在教程中创建的项目。
  • 或者,您可以保留项目并删除数据集和 Cloud Storage 存储桶。

停止 Docker 容器

1) 列出所有正在运行的 Docker 容器。

docker ps

2) 停止容器列表中具有适当容器 ID 的容器。

docker stop container_id

删除 AI Platform 资源

1) 删除模型版本。

gcloud ai-platform versions delete $VERSION_NAME --model=$MODEL_NAME

2) 删除模型。

gcloud ai-platform models delete $MODEL_NAME

删除数据集

删除项目也将删除项目中的所有数据集和所有表。如果您希望重复使用该项目,则可以删除在本教程中创建的数据集:

  1. 如有必要,请在 Google Cloud 控制台中打开 BigQuery 页面。

    前往 BigQuery 页面

  2. 在导航窗格中,点击您创建的 bqml_tutorial 数据集。

  3. 点击窗口右侧的删除数据集。此操作会删除相关数据集、表和所有数据。

  4. 删除数据集对话框中,输入您的数据集的名称 (bqml_tutorial),然后点击删除以确认删除命令。

删除您的 Cloud Storage 存储桶

删除项目将移除项目中的所有 Cloud Storage 存储桶。如果您希望重复使用该项目,则可以删除在本教程中创建的存储桶。

  1. 在 Google Cloud 控制台中,转到 Cloud Storage 存储桶页面。

    进入“存储桶”

  2. 选中与要删除的存储桶对应的复选框。

  3. 点击删除

  4. 在出现的叠加窗口中,点击删除以确认要删除此存储桶及其内容。

删除项目

要删除项目,请执行以下操作:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

后续步骤