モデルの管理

AutoML Vision Object Detection ではトレーニングを開始するたびに新しいモデルを作成するため、プロジェクトに多数のモデルが含まれる場合があります。プロジェクトのモデルの一覧の取得、特定のモデルの取得、モデルのノード番号の更新、不要になったモデルの削除ができます。

モデルの一覧表示

1 つのプロジェクトに多数のモデルが含まれる場合があります。このセクションでは、プロジェクトで使用できるモデルを一覧表示する方法を説明します。

ウェブ UI

AutoML Vision Object Detection UI を使用して、使用可能なモデルを一覧表示するには、左側のナビゲーション メニューの上部にあるモデルのリンクをクリックします。

モデルの画像の一覧表示

別のプロジェクトのモデルを表示するには、タイトルバーの右上にあるプルダウン リストからプロジェクトを選択します。

REST とコマンドライン

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID

HTTP メソッドと URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models"

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models" | Select-Object -Expand Content

次の例のような JSON レスポンスが返されます。このレスポンスには、クラウドでホストされる 2 つのモデルに関する情報が示されます。



    {
  "model": [
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-1",
      "displayName": "display-name-1",
      "datasetId": "dataset-id",
      "createTime": "2019-07-26T21:10:18.338846Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-08-07T22:24:07.720068Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "cloud-low-latency-1",
        "nodeQps": 1.2987012987012987,
        "stopReason": "MODEL_CONVERGED",
        "trainBudgetMilliNodeHours": "216000",
        "trainCostMilliNodeHours": "8230"
      }
    },
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-2",
      "displayName": "display-name-2",
      "datasetId": "dataset-id",
      "createTime": "2019-07-22T18:35:06.881193Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-07-22T19:58:44.980357Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "mobile-versatile-1",
        "nodeQps": -1,
        "stopReason": "MODEL_CONVERGED",
        "trainBudgetMilliNodeHours": "24000",
        "trainCostMilliNodeHours": "9367"
      }
    },
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-3",
      "displayName": "display-name-3",
      "datasetId": "dataset-id",
      "createTime": "2019-03-31T22:56:51.348238Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-07-22T18:42:44.594876Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "cloud-high-accuracy-1",
        "nodeQps": 0.6872852233676976
      }
    }
  ]
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"google.golang.org/api/iterator"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// listModels lists existing models.
func listModels(w io.Writer, projectID string, location string) error {
	// projectID := "my-project-id"
	// location := "us-central1"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.ListModelsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
	}

	it := client.ListModels(ctx, req)

	// Iterate over all results
	for {
		model, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("ListModels.Next: %v", err)
		}

		// Retrieve deployment state.
		deploymentState := "undeployed"
		if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
			deploymentState = "deployed"
		}

		// Display the model information.
		fmt.Fprintf(w, "Model name: %v\n", model.GetName())
		fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
		fmt.Fprintf(w, "Model create time:\n")
		fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
		fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
		fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)
	}

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ListModelsRequest;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import java.io.IOException;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModelsRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModelsRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s\n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s\n", retrievedModelId);
        System.out.format("Model display name: %s\n", model.getDisplayName());
        System.out.println("Model create time:");
        System.out.format("\tseconds: %s\n", model.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s\n", model.getCreateTime().getNanos());
        System.out.format("Model deployment state: %s\n", model.getDeploymentState());
      }
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listModels() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_model_metadata:*',
  };

  const [response] = await client.listModels(request);

  console.log('List of models:');
  for (const model of response) {
    console.log(`Model name: ${model.name}`);
    console.log(`
      Model id: ${model.name.split('/')[model.name.split('/').length - 1]}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${model.createTime.seconds}`);
    console.log(`\tnanos ${model.createTime.nanos / 1e9}`);
    console.log(`Model deployment state: ${model.deploymentState}`);
  }
}

listModels();

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"

request = automl.ListModelsRequest(parent=project_location, filter="")
response = client.list_models(request=request)

print("List of models:")
for model in response:
    # Display the model information.
    if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    print("Model create time: {}".format(model.create_time))
    print("Model deployment state: {}".format(deployment_state))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を実行してから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を実行してから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を実行してから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

モデルの取得

特定のトレーニング済みモデルを取得して、変更や予測ができます。

ウェブ UI

AutoML Vision Object Detection UI を使用して、使用可能なモデルを一覧表示するには、左側のナビゲーション メニューの上部にあるモデルのリンクをクリックします。

モデルの画像の一覧表示

別のプロジェクトのモデルを表示するには、タイトルバーの右上にあるプルダウン リストからプロジェクトを選択します。

REST とコマンドライン

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

HTTP メソッドと URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id"

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。



    {
  "name": "projects/project-id/locations/us-central1/models/model-id",
  "displayName": "display-name",
  "datasetId": "dataset-id",
  "createTime": "2019-07-26T21:10:18.338846Z",
  "deploymentState": "UNDEPLOYED",
  "updateTime": "2019-07-26T22:28:57.464076Z",
  "imageObjectDetectionModelMetadata": {
    "modelType": "cloud-low-latency-1",
    "nodeQps": 1.2987012987012987,
    "stopReason": "MODEL_CONVERGED",
    "trainBudgetMilliNodeHours": "216000",
    "trainCostMilliNodeHours": "8230"
  }
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.ModelName;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s\n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s\n", retrievedModelId);
      System.out.format("Model display name: %s\n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s\n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s\n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s\n", model.getDeploymentState());
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(name=model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time: {}".format(model.create_time))
print("Model deployment state: {}".format(deployment_state))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を実行してから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を実行してから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を実行してから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

モデルのノード番号の更新

トレーニング済みのモデルをデプロイした後に、トラフィック量に応じて、モデルがデプロイされるノードの数を更新できます。たとえば、このような操作は 1 秒あたりのクエリ数(QPS)が予想より多い場合などに行います。

モデルのデプロイを解除しなくても、ノード番号を変更できます。デプロイを更新すると、配信された予測トラフィックを中断せずにノード番号が変更されます。

ウェブ UI

  1. AutoML Vision Object Detection UI を開き、左側のナビゲーション バーで電球アイコンのある [モデル] タブを選択して、使用可能なモデルを表示します。

    別のプロジェクトのモデルを表示するには、タイトルバーの右上にあるプルダウン リストからプロジェクトを選択します。

  2. デプロイしたトレーニング済みモデルを選択します。
  3. タイトルバーのすぐ下にある [テストと使用] タブを選択します。
  4. ページ上部のボックスに、「モデルはデプロイされているため、オンライン予測リクエストに使用できます。」というメッセージが表示されます。このテキストの隣にある [デプロイを更新] オプションを選択します。

    [デプロイを更新] ボタンの画像
  5. [デプロイの更新] ウィンドウが開きます。モデルをデプロイする新しいノード番号をリストから選択します。ノード番号と一緒に 1 秒あたりの予測クエリ数(概算)が表示されます。[デプロイの更新] ポップアップ ウィンドウの画像
  6. リストから新しいノード番号を選択したら、[デプロイを更新] を選択して、モデルがデプロイされているノード番号を更新します。

    新しいノード番号を選択した後の [デプロイの更新] ウィンドウ
  7. [テストと使用] ウィンドウに戻ります。テキスト ボックスに「モデルをデプロイしています...」が表示されます。 モデルのデプロイ
  8. 新しいノード番号にモデルが正常にデプロイされると、プロジェクトに関連付けられたアドレスにメールが届きます。

REST とコマンドライン

モデルのデプロイに最初に使用した際と同じ方法で、デプロイ済みモデルのノード番号を変更します。

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

フィールドの考慮事項:

  • nodeCount - モデルをデプロイするノードの数。値は 1~100 にする必要があります(両端を含む)。ノードはマシンリソースの抽象化で、モデルの qps_per_node で指定されたオンライン予測秒間クエリ数(QPS)を処理できます。

HTTP メソッドと URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy

JSON 本文のリクエスト:

{
  "imageObjectDetectionModelDeploymentMetadata": {
    "nodeCount": 2
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy" | Select-Object -Expand Content

出力は次のようになります。オペレーション ID を使用して、タスクのステータスを取得できます。例については、長時間実行オペレーションによる作業をご覧ください。

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:00:20.692109Z",
    "updateTime": "2019-08-07T22:00:20.692109Z",
    "deployModelDetails": {}
  }
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// visionObjectDetectionDeployModelWithNodeCount deploys a model with node count.
func visionObjectDetectionDeployModelWithNodeCount(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "IOD123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		ModelDeploymentMetadata: &automlpb.DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata{
			ImageObjectDetectionModelDeploymentMetadata: &automlpb.ImageObjectDetectionModelDeploymentMetadata{
				NodeCount: 2,
			},
		},
	}

	op, err := client.DeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deployed.\n")

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DeployModelRequest;
import com.google.cloud.automl.v1.ImageObjectDetectionModelDeploymentMetadata;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionObjectDetectionDeployModelNodeCount {

  static void visionObjectDetectionDeployModelNodeCount()
      throws InterruptedException, ExecutionException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    visionObjectDetectionDeployModelNodeCount(projectId, modelId);
  }

  // Deploy a model for prediction with a specified node count (can be used to redeploy a model)
  static void visionObjectDetectionDeployModelNodeCount(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      ImageObjectDetectionModelDeploymentMetadata metadata =
          ImageObjectDetectionModelDeploymentMetadata.newBuilder().setNodeCount(2).build();
      DeployModelRequest request =
          DeployModelRequest.newBuilder()
              .setName(modelFullId.toString())
              .setImageObjectDetectionModelDeploymentMetadata(metadata)
              .build();
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);

      future.get();
      System.out.println("Model deployment finished");
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deployModelWithNodeCount() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    imageObjectDetectionModelDeploymentMetadata: {
      nodeCount: 2,
    },
  };

  const [operation] = await client.deployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model deployment finished. ${response}`);
}

deployModelWithNodeCount();

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

# node count determines the number of nodes to deploy the model on.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageobjectdetectionmodeldeploymentmetadata
metadata = automl.ImageObjectDetectionModelDeploymentMetadata(node_count=2)

request = automl.DeployModelRequest(
    name=model_full_id,
    image_object_detection_model_deployment_metadata=metadata,
)
response = client.deploy_model(request=request)

print("Model deployment finished. {}".format(response.result()))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を実行してから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を実行してから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を実行してから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

モデルの削除

モデル ID を使用して、モデルリソースを削除できます。

ウェブ UI

  1. AutoML Vision Object Detection UI で、左側のナビゲーション メニューにある電球アイコンをクリックして使用可能なモデルを一覧表示します。

  2. 削除する行の右端にあるその他メニューをクリックし、[モデルの削除] を選択します。

  3. 確認ダイアログ ボックスで [削除] をクリックします。

    モデル削除の画像

REST とコマンドライン

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

HTTP メソッドと URL:

DELETE https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X DELETE \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id"

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

出力は次のようになります。オペレーション ID を使用して、タスクのステータスを取得できます。例については、長時間実行オペレーションによる作業をご覧ください。

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2018-11-01T15:59:36.196506Z",
    "updateTime": "2018-11-01T15:59:36.196506Z",
    "deleteDetails": {}
  }
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// deleteModel deletes a model.
func deleteModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeleteModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.DeleteModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeleteModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deleted.\n")

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を実行してから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を実行してから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を実行してから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。