Usa la console Google Cloud per addestrare un modello di classificazione delle immagini AutoML. Dopo aver creato il set di dati e aver importato i dati, utilizza la console Google Cloud per esaminare le immagini di addestramento e iniziare l'addestramento del modello.
Questo tutorial è composto da diverse pagine:
Crea un set di dati di classificazione delle immagini e importa le immagini.
Addestra un modello di classificazione delle immagini AutoML.
Esegui il deployment di un modello su un endpoint e invia una previsione.
Ogni pagina presuppone che tu abbia già eseguito le istruzioni dalle pagine precedenti del tutorial.
Rivedi le immagini importate
Dopo l'importazione del set di dati, si aprirà la scheda Sfoglia. Puoi accedere a questa scheda anche selezionando Set di dati dal menu. Seleziona il set di annotazioni (set di annotazioni con immagine con etichetta singola) associato al nuovo set di dati.
Inizia l'addestramento del modello AutoML
Scegli una delle seguenti opzioni per iniziare l'addestramento:
Scegli Addestra nuovo modello.
Seleziona Modelli dal menu e poi Crea.
Seleziona Crea per aprire la finestra Addestra nuovo modello.
Seleziona Seleziona metodo di addestramento e scegli il set di dati target, se non vengono selezionati automaticamente. Assicurati che il pulsante di opzione
AutoML sia selezionato, quindi scegli CONTINUA.(Facoltativo) Seleziona Definisci il modello e inserisci il Nome modello. Fai clic su CONTINUA.
Seleziona Opzioni treno. Seleziona un'opzione di modello in base alle tue esigenze di accuratezza e latenza. Facoltativamente, abilita l'addestramento incrementale e fai clic su CONTINUA.
Di seguito sono riportate le considerazioni relative all'addestramento incrementale:
- L'addestramento incrementale può essere abilitato se esiste almeno un modello di base che è stato addestrato in questo progetto con lo stesso obiettivo.
- L'addestramento incrementale ti consente di utilizzare un modello di base esistente come punto di partenza per addestrare un nuovo modello, anziché addestrare un nuovo modello da zero.
- L'addestramento incrementale in genere consente di effettuare l'addestramento più rapidamente e di risparmiare tempo.
- Il modello di base può essere addestrato da un set di dati diverso.
Seleziona Computing e prezzi. Specifica un budget per l'ora nodo di 8 ore nodo. Seleziona Inizia addestramento.
L'addestramento richiede diverse ore. Viene inviata una notifica via email al termine dell'addestramento del modello.
Passaggi successivi
Segui la pagina successiva di questo tutorial per verificare le prestazioni del tuo modello AutoML addestrato ed esplorare i modi per migliorarlo.
Segui Eseguire il deployment di un modello su un endpoint ed eseguire una previsione per eseguire il deployment del modello AutoML addestrato. Viene inviata un'immagine al modello per la previsione.