Train custom ML models on Vertex AI Pipelines

This tutorial shows you how to use Vertex AI Pipelines to run an end-to-end ML workflow, including the following tasks:

  • Import and transform data.
  • Train a model using the selected ML framework.
  • Import the trained model to Vertex AI Model Registry.
  • Optional: Deploy the model for online serving with Vertex AI Prediction.

Before you begin

  1. Ensure that you've completed the tasks 1-3 in Set up a Google Cloud project and a development environment.

  2. Install the Vertex AI SDK for Python and the Kubeflow Pipelines SDK:

    python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
    

Run the ML model training pipeline

Choose training objective and ML framework in the following tabs to get sample code that you can run in your environment. The sample code does the following:

  • Loads components from a component repository to be used as pipeline building blocks.
  • Composes a pipeline by creating component tasks and passing data between them using arguments.
  • Submits the pipeline for execution on Vertex AI Pipelines. See Vertex AI Pipelines pricing.

Copy the code into your development environment and run it.

Tabular classification

TensorFlow

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
create_fully_connected_tensorflow_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Create_fully_connected_network/component.yaml")
train_model_using_Keras_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Train_model_using_Keras/on_CSV/component.yaml")
predict_with_TensorFlow_model_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Predict/on_CSV/component.yaml")
upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Tensorflow_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_TensorFlow_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    classification_dataset = binarize_column_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_name=label_column,
        predicate=" > 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=classification_dataset,
        fraction_1=training_set_fraction,
    )
    classification_training_data = split_task.outputs["split_1"]
    classification_testing_data = split_task.outputs["split_2"]

    network = create_fully_connected_tensorflow_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        output_activation_name="sigmoid",
        # output_size=1,
    ).outputs["model"]

    model = train_model_using_Keras_on_CSV_op(
        training_data=classification_training_data,
        model=network,
        label_column_name=classification_label_column,
        # Optional:
        loss_function_name="binary_crossentropy",
        number_of_epochs=10,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #metric_names=["mean_absolute_error"],
        #random_seed=0,
    ).outputs["trained_model"]

    predictions = predict_with_TensorFlow_model_on_CSV_data_op(
        dataset=classification_testing_data,
        model=model,
        # label_column_name needs to be set when doing prediction on a dataset that has labels
        label_column_name=classification_label_column,
        # Optional:
        # batch_size=1000,
    ).outputs["predictions"]

    vertex_model_name = upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_model_using_TensorFlow_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

PyTorch

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
create_fully_connected_pytorch_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_fully_connected_network/component.yaml")
train_pytorch_model_from_csv_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Train_PyTorch_model/from_CSV/component.yaml")
create_pytorch_model_archive_with_base_handler_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_PyTorch_Model_Archive/with_base_handler/component.yaml")
upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_PyTorch_model_archive/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_PyTorch_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    classification_training_data = binarize_column_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_name=label_column,
        predicate=" > 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    network = create_fully_connected_pytorch_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        output_activation_name="sigmoid",
        # output_size=1,
    ).outputs["model"]

    model = train_pytorch_model_from_csv_op(
        model=network,
        training_data=classification_training_data,
        label_column_name=classification_label_column,
        loss_function_name="binary_cross_entropy",
        # Optional:
        #number_of_epochs=1,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #batch_log_interval=100,
        #random_seed=0,
    ).outputs["trained_model"]

    model_archive = create_pytorch_model_archive_with_base_handler_op(
        model=model,
        # Optional:
        # model_name="model",
        # model_version="1.0",
    ).outputs["Model archive"]

    vertex_model_name = upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op(
        model_archive=model_archive,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_classification_model_using_PyTorch_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

XGBoost

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
train_XGBoost_model_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Train/component.yaml")
xgboost_predict_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Predict/component.yaml")
upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_XGBoost_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_XGBoost_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    classification_dataset = binarize_column_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_name=label_column,
        predicate="> 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=classification_dataset,
        fraction_1=training_set_fraction,
    )
    classification_training_data = split_task.outputs["split_1"]
    classification_testing_data = split_task.outputs["split_2"]

    model = train_XGBoost_model_on_CSV_op(
        training_data=classification_training_data,
        label_column_name=classification_label_column,
        objective="binary:logistic",
        # Optional:
        #starting_model=None,
        #num_iterations=10,
        #booster_params={},
        #booster="gbtree",
        #learning_rate=0.3,
        #min_split_loss=0,
        #max_depth=6,
    ).outputs["model"]

    # Predicting on the testing data
    predictions = xgboost_predict_on_CSV_op(
        data=classification_testing_data,
        model=model,
        # label_column needs to be set when doing prediction on a dataset that has labels
        label_column_name=classification_label_column,
    ).outputs["predictions"]

    vertex_model_name = upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_model_using_XGBoost_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Scikit-learn

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
train_logistic_regression_model_using_scikit_learn_from_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/1f5cf6e06409b704064b2086c0a705e4e6b4fcde/community-content/pipeline_components/ML_frameworks/Scikit_learn/Train_logistic_regression_model/from_CSV/component.yaml")
upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Scikit-learn_pickle_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_logistic_regression_model_using_Scikit_learn_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    classification_training_data = binarize_column_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_name=label_column,
        predicate="> 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    model = train_logistic_regression_model_using_scikit_learn_from_CSV_op(
        dataset=classification_training_data,
        label_column_name=classification_label_column,
        # Optional:
        #penalty="l2",
        #solver="lbfgs",
        #max_iterations=100,
        #multi_class_mode="auto",
        #random_seed=0,
    ).outputs["model"]

    vertex_model_name = upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        sklearn_vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_logistic_regression_model_using_Scikit_learn_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Tabular regression

TensorFlow

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
create_fully_connected_tensorflow_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Create_fully_connected_network/component.yaml")
train_model_using_Keras_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Train_model_using_Keras/on_CSV/component.yaml")
predict_with_TensorFlow_model_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Predict/on_CSV/component.yaml")
upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Tensorflow_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_Tensorflow_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=dataset,
        fraction_1=training_set_fraction,
    )
    training_data = split_task.outputs["split_1"]
    testing_data = split_task.outputs["split_2"]

    network = create_fully_connected_tensorflow_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        # output_activation_name=None,
        # output_size=1,
    ).outputs["model"]

    model = train_model_using_Keras_on_CSV_op(
        training_data=training_data,
        model=network,
        label_column_name=label_column,
        # Optional:
        #loss_function_name="mean_squared_error",
        number_of_epochs=10,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        metric_names=["mean_absolute_error"],
        #random_seed=0,
    ).outputs["trained_model"]

    predictions = predict_with_TensorFlow_model_on_CSV_data_op(
        dataset=testing_data,
        model=model,
        # label_column_name needs to be set when doing prediction on a dataset that has labels
        label_column_name=label_column,
        # Optional:
        # batch_size=1000,
    ).outputs["predictions"]

    vertex_model_name = upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_regression_model_using_Tensorflow_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

PyTorch

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
create_fully_connected_pytorch_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_fully_connected_network/component.yaml")
train_pytorch_model_from_csv_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Train_PyTorch_model/from_CSV/component.yaml")
create_pytorch_model_archive_with_base_handler_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_PyTorch_Model_Archive/with_base_handler/component.yaml")
upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_PyTorch_model_archive/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_PyTorch_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    all_columns = [label_column] + feature_columns
    # Deploying the model might incur additional costs over time
    deploy_model = False

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    network = create_fully_connected_pytorch_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        # output_activation_name=None,
        # output_size=1,
    ).outputs["model"]

    model = train_pytorch_model_from_csv_op(
        model=network,
        training_data=training_data,
        label_column_name=label_column,
        # Optional:
        #loss_function_name="mse_loss",
        #number_of_epochs=1,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #batch_log_interval=100,
        #random_seed=0,
    ).outputs["trained_model"]

    model_archive = create_pytorch_model_archive_with_base_handler_op(
        model=model,
        # Optional:
        # model_name="model",
        # model_version="1.0",
    ).outputs["Model archive"]

    vertex_model_name = upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op(
        model_archive=model_archive,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_regression_model_using_PyTorch_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

XGBoost

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
train_XGBoost_model_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Train/component.yaml")
xgboost_predict_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Predict/component.yaml")
upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_XGBoost_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_XGBoost_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=dataset,
        fraction_1=training_set_fraction,
    )
    training_data = split_task.outputs["split_1"]
    testing_data = split_task.outputs["split_2"]

    model = train_XGBoost_model_on_CSV_op(
        training_data=training_data,
        label_column_name=label_column,
        # Optional:
        #starting_model=None,
        #num_iterations=10,
        #booster_params={},
        #objective="reg:squarederror",
        #booster="gbtree",
        #learning_rate=0.3,
        #min_split_loss=0,
        #max_depth=6,
    ).outputs["model"]

    # Predicting on the testing data
    predictions = xgboost_predict_on_CSV_op(
        data=testing_data,
        model=model,
        # label_column needs to be set when doing prediction on a dataset that has labels
        label_column_name=label_column,
    ).outputs["predictions"]

    vertex_model_name = upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_regression_model_using_XGBoost_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Scikit-learn

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
train_linear_regression_model_using_scikit_learn_from_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/1f5cf6e06409b704064b2086c0a705e4e6b4fcde/community-content/pipeline_components/ML_frameworks/Scikit_learn/Train_linear_regression_model/from_CSV/component.yaml")
upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Scikit-learn_pickle_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_linear_model_using_Scikit_learn_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    all_columns = [label_column] + feature_columns
    # Deploying the model might incur additional costs over time
    deploy_model = False

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    model = train_linear_regression_model_using_scikit_learn_from_CSV_op(
        dataset=training_data,
        label_column_name=label_column,
    ).outputs["model"]

    vertex_model_name = upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        sklearn_vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_regression_linear_model_using_Scikit_learn_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Note the following about code samples provided:

  • A Kubeflow pipeline is defined as a Python function.
  • The pipeline's workflow steps are created using Kubeflow pipeline components. By using the outputs of a component as an input of another component, you define the pipeline's workflow as a graph. For example, the fill_all_missing_values_using_Pandas_on_CSV_data_op component task depends on the transformed_table output from the select_columns_using_Pandas_on_CSV_data_op component task.
  • You create a pipeline run on Vertex AI Pipelines using the Vertex AI SDK for Python.

Monitor the pipeline

In the Google Cloud console, in the Vertex AI section, go to the Pipelines page and open the Runs tab.

Go to Pipeline runs

What's next