Windows-Passworterstellung automatisieren


Mit dem Befehl gcloud compute reset-windows-password können Nutzer, die Schreibzugriff auf das Compute Engine-Projekt haben, Passwörter für Konten auf Windows-Instanzen sicher abrufen.

Der Befehl führt dies durch, indem ein Nutzername und ein öffentlicher RSA-Schlüssel an die Instanz gesendet werden. Der Agent, der auf der Instanz ausgeführt wird, führt dann einen der folgenden Schritte aus:

  • Er erstellt für diesen Nutzernamen ein Konto auf der Instanz und generiert ein zufälliges Passwort.
  • Er setzt das Passwort auf einen zufälligen Wert zurück, wenn das Konto bereits existiert.

Der Agent, der auf der Instanz ausgeführt, verschlüsselt das Passwort mit dem bereitgestellten öffentlichen Schlüssel und sendet es an den Client zurück, der es mit dem entsprechenden privaten Schlüssel wieder entschlüsselt.

In diesem Abschnitt wird beschrieben, wie der Vorgang funktioniert, und es werden einige Beispiele gegeben, die diese Schritte programmatisch nachvollziehen. Wenn Sie diese Schritte manuell ausführen möchten, lesen Sie die Anleitung für die manuelle Vorgehensweise weiter unten.

Hinweise

  • Erstellen Sie eine Windows-Instanz.
  • Richten Sie die Authentifizierung ein, falls Sie dies noch nicht getan haben. Bei der Authentifizierung wird Ihre Identität für den Zugriff auf Google Cloud-Dienste und APIs überprüft. Zur Ausführung von Code oder Beispielen aus einer lokalen Entwicklungsumgebung können Sie sich bei Compute Engine authentifizieren.

    Wählen Sie den Tab für die Verwendung der Beispiele auf dieser Seite aus:

    Console

    Wenn Sie über die Google Cloud Console auf Google Cloud-Dienste und -APIs zugreifen, müssen Sie die Authentifizierung nicht einrichten.

    gcloud

    1. Installieren Sie die Google Cloud CLI und initialisieren Sie sie mit folgendem Befehl:

      gcloud init
    2. Legen Sie eine Standardregion und -zone fest.

    REST

    Verwenden Sie die von der gcloud CLI bereitgestellten Anmeldedaten, um die REST API-Beispiele auf dieser Seite in einer lokalen Entwicklungsumgebung zu verwenden.

      Installieren Sie die Google Cloud CLI und initialisieren Sie sie mit folgendem Befehl:

      gcloud init

Passworterstellung automatisieren

Go


//  Copyright 2018 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

package main

import (
	"context"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha1"
	"encoding/base64"
	"encoding/binary"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"strings"
	"time"

	daisyCompute "github.com/GoogleCloudPlatform/compute-image-tools/daisy/compute"
	"google.golang.org/api/compute/v1"
)

var (
	instance = flag.String("instance", "", "instance to reset password on")
	zone     = flag.String("zone", "", "zone instance is in")
	project  = flag.String("project", "", "project instance is in")
	user     = flag.String("user", "", "user to reset password for")
)

func getInstanceMetadata(client daisyCompute.Client, i, z, p string) (*compute.Metadata, error) {
	ins, err := client.GetInstance(p, z, i)
	if err != nil {
		return nil, fmt.Errorf("error getting instance: %v", err)
	}

	return ins.Metadata, nil
}

type windowsKeyJSON struct {
	ExpireOn string
	Exponent string
	Modulus  string
	UserName string
}

func generateKey(priv *rsa.PublicKey, u string) (*windowsKeyJSON, error) {
	bs := make([]byte, 4)
	binary.BigEndian.PutUint32(bs, uint32(priv.E))

	return &windowsKeyJSON{
		ExpireOn: time.Now().Add(5 * time.Minute).Format(time.RFC3339),
		// This is different than what the other tools produce,
		// AQAB vs AQABAA==, both are decoded as 65537.
		Exponent: base64.StdEncoding.EncodeToString(bs),
		Modulus:  base64.StdEncoding.EncodeToString(priv.N.Bytes()),
		UserName: u,
	}, nil
}

type credsJSON struct {
	ErrorMessage      string `json:"errorMessage,omitempty"`
	EncryptedPassword string `json:"encryptedPassword,omitempty"`
	Modulus           string `json:"modulus,omitempty"`
}

func getEncryptedPassword(client daisyCompute.Client, i, z, p, mod string) (string, error) {
	out, err := client.GetSerialPortOutput(p, z, i, 4, 0)
	if err != nil {
		return "", err
	}

	for _, line := range strings.Split(out.Contents, "\n") {
		var creds credsJSON
		if err := json.Unmarshal([]byte(line), &creds); err != nil {
			continue
		}
		if creds.Modulus == mod {
			if creds.ErrorMessage != "" {
				return "", fmt.Errorf("error from agent: %s", creds.ErrorMessage)
			}
			return creds.EncryptedPassword, nil
		}
	}
	return "", errors.New("password not found in serial output")
}

func decryptPassword(priv *rsa.PrivateKey, ep string) (string, error) {
	bp, err := base64.StdEncoding.DecodeString(ep)
	if err != nil {
		return "", fmt.Errorf("error decoding password: %v", err)
	}
	pwd, err := rsa.DecryptOAEP(sha1.New(), rand.Reader, priv, bp, nil)
	if err != nil {
		return "", fmt.Errorf("error decrypting password: %v", err)
	}
	return string(pwd), nil
}

func resetPassword(client daisyCompute.Client, i, z, p, u string) (string, error) {
	md, err := getInstanceMetadata(client, *instance, *zone, *project)
	if err != nil {
		return "", fmt.Errorf("error getting instance metadata: %v", err)
	}

	fmt.Println("Generating public/private key pair")
	key, err := rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		return "", err
	}

	winKey, err := generateKey(&key.PublicKey, u)
	if err != nil {
		return "", err
	}

	data, err := json.Marshal(winKey)
	if err != nil {
		return "", err
	}

	winKeys := string(data)
	var found bool
	for _, mdi := range md.Items {
		if mdi.Key == "windows-keys" {
			val := fmt.Sprintf("%s\n%s", *mdi.Value, winKeys)
			mdi.Value = &val
			found = true
			break
		}
	}
	if !found {
		md.Items = append(md.Items, &compute.MetadataItems{Key: "windows-keys", Value: &winKeys})
	}

	fmt.Println("Setting new 'windows-keys' metadata")
	if err := client.SetInstanceMetadata(p, z, i, md); err != nil {
		return "", err
	}

	fmt.Println("Fetching encrypted password")
	var trys int
	var ep string
	for {
		time.Sleep(1 * time.Second)
		ep, err = getEncryptedPassword(client, i, z, p, winKey.Modulus)
		if err == nil {
			break
		}
		if trys > 10 {
			return "", err
		}
		trys++
	}

	fmt.Println("Decrypting password")
	return decryptPassword(key, ep)
}

func main() {
	flag.Parse()
	if *instance == "" {
		log.Fatal("-instance flag required")
	}
	if *zone == "" {
		log.Fatal("-zone flag required")
	}
	if *project == "" {
		log.Fatal("-project flag required")
	}
	if *user == "" {
		log.Fatal("-user flag required")
	}

	ctx := context.Background()
	client, err := daisyCompute.NewClient(ctx)
	if err != nil {
		log.Fatalf("Error creating compute service: %v", err)
	}

	fmt.Printf("Resetting password on instance %q for user %q\n", *instance, *user)
	pw, err := resetPassword(client, *instance, *zone, *project, *user)
	if err != nil {
		log.Fatal(err)
	}
	fmt.Printf("- Username: %s\n- Password: %s\n", *user, pw)
}

Python


#!/usr/bin/env python

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import copy
import datetime
import json
import time

# PyCrypto library: https://pypi.python.org/pypi/pycrypto
from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA
from Crypto.Util.number import long_to_bytes

# Google API Client Library for Python:
# https://developers.google.com/api-client-library/python/start/get_started
from oauth2client.client import GoogleCredentials
from googleapiclient.discovery import build

def GetCompute():
    """Get a compute object for communicating with the Compute Engine API."""
    credentials = GoogleCredentials.get_application_default()
    compute = build('compute', 'v1', credentials=credentials)
    return compute

def GetInstance(compute, instance, zone, project):
    """Get the data for a Google Compute Engine instance."""
    cmd = compute.instances().get(instance=instance, project=project,
                                  zone=zone)
    return cmd.execute()

def GetKey():
    """Get an RSA key for encryption."""
    # This uses the PyCrypto library
    key = RSA.generate(2048)
    return key

def GetModulusExponentInBase64(key):
    """Return the public modulus and exponent for the key in bas64 encoding."""
    mod = long_to_bytes(key.n)
    exp = long_to_bytes(key.e)

    modulus = base64.b64encode(mod)
    exponent = base64.b64encode(exp)

    return modulus, exponent

def GetExpirationTimeString():
    """Return an RFC3339 UTC timestamp for 5 minutes from now."""
    utc_now = datetime.datetime.utcnow()
    # These metadata entries are one-time-use, so the expiration time does
    # not need to be very far in the future. In fact, one minute would
    # generally be sufficient. Five minutes allows for minor variations
    # between the time on the client and the time on the server.
    expire_time = utc_now + datetime.timedelta(minutes=5)
    return expire_time.strftime('%Y-%m-%dT%H:%M:%SZ')

def GetJsonString(user, modulus, exponent, email):
    """Return the JSON string object that represents the windows-keys entry."""
    expire = GetExpirationTimeString()
    data = {'userName': user,
            'modulus': modulus,
            'exponent': exponent,
            'email': email,
            'expireOn': expire}
    return json.dumps(data)

def UpdateWindowsKeys(old_metadata, metadata_entry):
    """Return updated metadata contents with the new windows-keys entry."""
    # Simply overwrites the "windows-keys" metadata entry. Production code may
    # want to append new lines to the metadata value and remove any expired
    # entries.
    new_metadata = copy.deepcopy(old_metadata)
    new_metadata['items'] = [{
        'key': "windows-keys",
        'value': metadata_entry
    }]
    return new_metadata

def UpdateInstanceMetadata(compute, instance, zone, project, new_metadata):
    """Update the instance metadata."""
    cmd = compute.instances().setMetadata(instance=instance, project=project,
                                          zone=zone, body=new_metadata)
    return cmd.execute()

def GetSerialPortFourOutput(compute, instance, zone, project):
    """Get the output from serial port 4 from the instance."""
    # Encrypted passwords are printed to COM4 on the windows server:
    port = 4
    cmd = compute.instances().getSerialPortOutput(instance=instance,
                                                  project=project,
                                                  zone=zone, port=port)
    output = cmd.execute()
    return output['contents']

def GetEncryptedPasswordFromSerialPort(serial_port_output, modulus):
    """Find and return the correct encrypted password, based on the modulus."""
    # In production code, this may need to be run multiple times if the output
    # does not yet contain the correct entry.
    output = serial_port_output.split('\n')
    for line in reversed(output):
        try:
            entry = json.loads(line)
            if modulus == entry['modulus']:
                return entry['encryptedPassword']
        except ValueError:
            pass

def DecryptPassword(encrypted_password, key):
    """Decrypt a base64 encoded encrypted password using the provided key."""
    decoded_password = base64.b64decode(encrypted_password)
    cipher = PKCS1_OAEP.new(key)
    password = cipher.decrypt(decoded_password)
    return password

def main(instance, zone, project, user, email):
    # Setup
    compute = GetCompute()
    key = GetKey()
    modulus, exponent = GetModulusExponentInBase64(key)

    # Get existing metadata
    instance_ref = GetInstance(compute, instance, zone, project)
    old_metadata = instance_ref['metadata']

    # Create and set new metadata
    metadata_entry = GetJsonString(user, modulus,
                                   exponent, email)
    new_metadata = UpdateWindowsKeys(old_metadata, metadata_entry)
    result = UpdateInstanceMetadata(compute, instance, zone, project,
                                    new_metadata)

    # For this sample code, just sleep for 30 seconds instead of checking for
    # responses. In production code, this should monitor the status of the
    # metadata update operation.
    time.sleep(30)

    # Get and decrypt password from serial port output
    serial_port_output = GetSerialPortFourOutput(compute, instance,
                                                 zone, project)
    enc_password = GetEncryptedPasswordFromSerialPort(serial_port_output,
                                                      modulus)
    password = DecryptPassword(enc_password, key)

    # Display the username, password and IP address for the instance
    print 'Username:   {0}'.format(user)
    print 'Password:   {0}'.format(password)
    ip = instance_ref['networkInterfaces'][0]['accessConfigs'][0]['natIP']
    print 'IP Address: {0}'.format(ip)

if __name__ == '__main__':
    instance = 'my-instance'
    zone = 'us-central1-a'
    project = 'my-project'
    user = 'example-user'
    email = 'user@example.com'
    main(instance, zone, project, user, email)

Java


/**
 * Copyright 2015 Google Inc. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * This package demonstrates how to reset Windows passwords in Java.
 */

package cloud.google.com.windows.example;

import com.google.api.client.auth.oauth2.Credential;
import com.google.api.client.googleapis.auth.oauth2.GoogleCredential;
import com.google.api.client.googleapis.javanet.GoogleNetHttpTransport;
import com.google.api.client.http.HttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.jackson2.JacksonFactory;
import com.google.api.client.repackaged.org.apache.commons.codec.binary.Base64;
import com.google.api.services.compute.Compute;
import com.google.api.services.compute.model.Instance;
import com.google.api.services.compute.model.Metadata;
import com.google.api.services.compute.model.Metadata.Items;
import com.google.api.services.compute.model.SerialPortOutput;
import com.google.common.io.BaseEncoding;

import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;

import java.math.BigInteger;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.RSAPublicKeySpec;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.LinkedList;
import java.util.List;
import java.util.TimeZone;

import javax.crypto.Cipher;

public class ExampleCode {

  public ExampleCode() {}

  // Constants used to configure behavior.
  private static final String ZONE_NAME = "us-central1-a";
  private static final String PROJECT_NAME = "example-project-1234";
  private static final String INSTANCE_NAME = "test-instance";
  private static final String APPLICATION_NAME = "windows-pw-reset";

  // Constants for configuring user name, email, and SSH key expiration.
  private static final String USER_NAME = "example_user";
  private static final String EMAIL = "example_user@test.com";

  // Keys are one-time use, so the metadata doesn't need to stay around for long.
  // 5 minutes chosen to allow for differences between time on the client
  // and time on the server.
  private static final long EXPIRE_TIME = 300000;

  // HttpTransport and JsonFactory used to create the Compute object.
  private static HttpTransport httpTransport;
  private static final JsonFactory JSON_FACTORY = JacksonFactory.getDefaultInstance();

  public static void main(String[] args) {
    ExampleCode ec = new ExampleCode();
    try {
      // Initialize Transport object.
      httpTransport = GoogleNetHttpTransport.newTrustedTransport();

      // Reset the password.
      ec.resetPassword();
    } catch (Exception e) {
      e.printStackTrace();
      System.exit(1);
    }
  }

  public void resetPassword() throws Exception {
    // Get credentials to setup a connection with the Compute API.
    Credential cred = GoogleCredential.getApplicationDefault();

    // Create an instance of the Compute API.
    Compute compute = new Compute.Builder(httpTransport, JSON_FACTORY, null)
        .setApplicationName(APPLICATION_NAME).setHttpRequestInitializer(cred).build();

    // Get the instance object to gain access to the instance's metadata.
    Instance inst = compute.instances().get(PROJECT_NAME, ZONE_NAME, INSTANCE_NAME).execute();
    Metadata metadata = inst.getMetadata();

    // Generate the public/private key pair for encryption and decryption.
    KeyPair keys = generateKeys();

    // Update metadata from instance with new windows-keys entry.
    replaceMetadata(metadata, buildKeyMetadata(keys));

    // Tell Compute Engine to update the instance metadata with our changes.
    compute.instances().setMetadata(PROJECT_NAME, ZONE_NAME, INSTANCE_NAME, metadata).execute();

    System.out.println("Updating metadata...");

    // Sleep while waiting for metadata to propagate - production code may
    // want to monitor the status of the metadata update operation.
    Thread.sleep(30000);

    System.out.println("Getting serial output...");

    // Request the output from serial port 4.
    // In production code, this operation should be polled.
    SerialPortOutput output = compute.instances()
        .getSerialPortOutput(PROJECT_NAME, ZONE_NAME, INSTANCE_NAME).setPort(4).execute();

    // Get the last line - this will be a JSON string corresponding to the
    // most recent password reset attempt.
    String[] entries = output.getContents().split("\n");
    String outputEntry = entries[entries.length - 1];

    // Parse output using the json-simple library.
    JSONParser parser = new JSONParser();
    JSONObject passwordDict = (JSONObject) parser.parse(outputEntry);

    String encryptedPassword = passwordDict.get("encryptedPassword").toString();

    // Output user name and decrypted password.
    System.out.println("\nUser name: " + passwordDict.get("userName").toString());
    System.out.println("Password: " + decryptPassword(encryptedPassword, keys));
  }

  private String decryptPassword(String message, KeyPair keys) {
    try {
      // Add the bouncycastle provider - the built-in providers don't support RSA
      // with OAEPPadding.
      Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());

      // Get the appropriate cipher instance.
      Cipher rsa = Cipher.getInstance("RSA/NONE/OAEPPadding", "BC");

      // Add the private key for decryption.
      rsa.init(Cipher.DECRYPT_MODE, keys.getPrivate());

      // Decrypt the text.
      byte[] rawMessage = Base64.decodeBase64(message);
      byte[] decryptedText = rsa.doFinal(rawMessage);

      // The password was encoded using UTF8. Transform into string.
      return new String(decryptedText, "UTF8");
    } catch (Exception e) {
      e.printStackTrace();
      System.exit(1);
    }
    return "";
  }

  private void replaceMetadata(Metadata input, JSONObject newMetadataItem) {
    // Transform the JSON object into a string that the API can use.
    String newItemString = newMetadataItem.toJSONString();

    // Get the list containing all of the Metadata entries for this instance.
    List<Items> items = input.getItems();

    // If the instance has no metadata, items can be returned as null.
    if (items == null)
    {
      items = new LinkedList<Items>();
      input.setItems(items);
    }

    // Find the "windows-keys" entry and update it.
    for (Items item : items) {
      if (item.getKey().compareTo("windows-keys") == 0) {
        // Replace item's value with the new entry.
        // To prevent race conditions, production code may want to maintain a
        // list where the oldest entries are removed once the 32KB limit is
        // reached for the metadata entry.
        item.setValue(newItemString);
        return;
      }
    }

    // "windows.keys" entry doesn't exist in the metadata - append it.
    // This occurs when running password-reset for the first time on an instance.
    items.add(new Items().setKey("windows-keys").setValue(newItemString));
  }

  private KeyPair generateKeys() throws NoSuchAlgorithmException {
    KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

    // Key moduli for encryption/decryption are 2048 bits long.
    keyGen.initialize(2048);

    return keyGen.genKeyPair();
  }

  @SuppressWarnings("unchecked")
  private JSONObject buildKeyMetadata(KeyPair pair) throws NoSuchAlgorithmException,
      InvalidKeySpecException {
    // Object used for storing the metadata values.
    JSONObject metadataValues = new JSONObject();

    // Encode the public key into the required JSON format.
    metadataValues.putAll(jsonEncode(pair));

    // Add username and email.
    metadataValues.put("userName", USER_NAME);
    metadataValues.put("email", EMAIL);

    // Create the date on which the new keys expire.
    Date now = new Date();
    Date expireDate = new Date(now.getTime() + EXPIRE_TIME);

    // Format the date to match rfc3339.
    SimpleDateFormat rfc3339Format = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
    rfc3339Format.setTimeZone(TimeZone.getTimeZone("UTC"));
    String dateString = rfc3339Format.format(expireDate);

    // Encode the expiration date for the returned JSON dictionary.
    metadataValues.put("expireOn", dateString);

    return metadataValues;
  }

  @SuppressWarnings("unchecked")
  private JSONObject jsonEncode(KeyPair keys) throws NoSuchAlgorithmException,
      InvalidKeySpecException {
    KeyFactory factory = KeyFactory.getInstance("RSA");

    // Get the RSA spec for key manipulation.
    RSAPublicKeySpec pubSpec = factory.getKeySpec(keys.getPublic(), RSAPublicKeySpec.class);

    // Extract required parts of the key.
    BigInteger modulus = pubSpec.getModulus();
    BigInteger exponent = pubSpec.getPublicExponent();

    // Grab an encoder for the modulus and exponent to encode using RFC 3548;
    // Java SE 7 requires an external library (Google's Guava used here)
    // Java SE 8 has a built-in Base64 class that can be used instead. Apache also has an RFC 3548
    // encoder.
    BaseEncoding stringEncoder = BaseEncoding.base64();

    // Strip out the leading 0 byte in the modulus.
    byte[] arr = Arrays.copyOfRange(modulus.toByteArray(), 1, modulus.toByteArray().length);

    JSONObject returnJson = new JSONObject();

    // Encode the modulus, add to returned JSON object.
    String modulusString = stringEncoder.encode(arr).replaceAll("\n", "");
    returnJson.put("modulus", modulusString);

    // Encode exponent, add to returned JSON object.
    String exponentString = stringEncoder.encode(exponent.toByteArray()).replaceAll("\n", "");
    returnJson.put("exponent", exponentString);

    return returnJson;
  }
}

Anleitung für die manuelle Vorgehensweise

In der folgenden Anleitung für die manuelle Vorgehensweise wird für die kryptografischen Funktionen OpenSSL und für einige andere Funktionen werden die Bash-Shell bzw. Linux-Tools verwendet, es sind aber auch viele andere Implementierungen möglich.

  1. Generieren Sie ein 2048-Bit-RSA-Schlüsselpaar. In OpenSSL generieren Sie dieses Schlüsselpaar mit folgendem Befehl:

    $ openssl genrsa -out private_key 2048
    

    Dies generiert eine private Schlüsseldatei mit dem Namen private_key, deren Inhalt so aussieht:

    $ cat private_key
    -----BEGIN RSA PRIVATE KEY-----
    MIIEpAIBAAKCAQEAwgsquN4IBNPqIUnu+h/5Za1kujb2YRhX1vCQVQAkBwnWigcC
    qOBVfRa5JoZfx6KIvEXjWqa77jPvlsxM4WPqnDIM2qiK36up3SKkYwFjff6F2ni/
    ry8vrwXCX3sGZ1hbIHlK0O012HpA3ISeEswVZmX2X67naOvJXfY5v0hGPWqCADao
    +xVxrmxsZD4IWnKl1UaZzI5lhAzr8fw6utHwx1EZ/MSgsEki6tujcZfN+GUDRnmJ
    GQSnPTXmsf7Q4DKreTZk49cuyB3prV91S0x3DYjCUpSXrkVy1Ha5XicGD/q+ystu
    FsJnrrhbNXJbpSjM6sjo/aduAkZJl4FmOt0R7QIDAQABAoIBAQCsT6hHc/tg9iIC
    H5pUiRI55Uj+R5JwVGKkXwl8Qdy8V1MpTOJivpuLsiMGf+sL51xO/CzRsiBOfdYz
    bgaTW9vZimR5w5NW3iTAV2Ps+y2zk9KfV/y3/0nzvUSG70OXgBGj+7GhaBQZwS5Z
    5HZOsOYMAV1QSIv8Uu2FQAK1xuOA4seJ/NK42iXgVB1XvYe2AxCWNqCBJylk9F5N
    8a213oJWw2mwQWCSfZhuvwYRO7w/V+mInKPkKlWvf3SLuMCWeDI8s0jLsJMQ0rbp
    jYXRzc2G+LF1aLxjatiGeLsqfVYerNohufGAajpNkSvcMciDXvD9aJhZqior+x2Q
    rCnMuNRNAoGBAPI6r32wIf8H9GmcvGrXk9OYLq0uJGqAtJDgGmJM5BSX4mlSz+Ni
    SYlQOfi24ykQDo3XbA59Lb6H0L64czi2a3OmpG8s6h4ymp+3cSd1k1AER1oZudwH
    9UScGfSgT/nMgufBwEGlQkCMp5x4Sl20clCHZ49p9eNiXML3wxpCZPIjAoGBAM0T
    NKt/rjqMs0qOWAJKemSPk0zV+1RSjCoOdKC6jmHRGr/MIoKiJLIkywV2m53yv8Wu
    BF3gVUDlwojoOKcVR8588tek5L0j9RshGovKj4Uxz9uPPhzeNnlSA+5PS284VtKz
    LX8xZ/b+MNCyor9jT0qoWylqym0w+M4aFL2tUQSvAoGABJvnQO38B51AIk5QK3xE
    nM8VfEgXe0tNpEAPYHV0FYw6S6S+veXd3lX/dGMOeXaLwFkr/i6Vkz2EVEywLJEU
    BFRUZqUlI0P1OzrDVWvgTLJ4JRe+OJiSKycJO2VdgDRK/Vvra5RYaWADxG9pgtTv
    I+cfqlPq0NPLTg5m0PYYc58CgYBpGt/SygTNA1Hc82mN+wgRxDhVmBJRHGG0KGaD
    /jl9TsOr638AfwPZvdvD+A83+7NoKJEaYCCxu1BiBMsMb263GPkJpvyJKAW2mtfV
    L8MxG9+Rgy/tccJvmaZkHIXoAfMV2DmISBUl1Q/F1thsyQRZmkHmz1Hidsf+MgXR
    VSQCBwKBgQCxwJtGZGPdQbDXcZZtL0yJJIbdt5Q/TrW0es17IPAoze+E6zFg9mo7
    ea9AuGxOGDQwO9n5DBn/3XcSjRnhvXaW60Taz6ZC60Zh/s6IilCmav+n9ewFHJ3o
    AglSJZRJ1Eer0m5m6s2FW5U0Yjthxwkm3WCWS61cOOTvb6xhQ5+WSw==
    -----END RSA PRIVATE KEY-----
    
  2. Generieren Sie einen öffentlichen Schlüssel. Einen öffentlichen Schlüssel erstellen Sie mit diesem Befehl:

    $ openssl rsa -pubout -in private_key -out public_key
    

    Hiermit wird eine Datei public_key erzeugt, die so aussieht:

    $ cat public_key
    -----BEGIN PUBLIC KEY-----
    MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwgsquN4IBNPqIUnu+h/5
    Za1kujb2YRhX1vCQVQAkBwnWigcCqOBVfRa5JoZfx6KIvEXjWqa77jPvlsxM4WPq
    nDIM2qiK36up3SKkYwFjff6F2ni/ry8vrwXCX3sGZ1hbIHlK0O012HpA3ISeEswV
    ZmX2X67naOvJXfY5v0hGPWqCADao+xVxrmxsZD4IWnKl1UaZzI5lhAzr8fw6utHw
    x1EZ/MSgsEki6tujcZfN+GUDRnmJGQSnPTXmsf7Q4DKreTZk49cuyB3prV91S0x3
    DYjCUpSXrkVy1Ha5XicGD/q+ystuFsJnrrhbNXJbpSjM6sjo/aduAkZJl4FmOt0R
    7QIDAQAB
    -----END PUBLIC KEY-----
    
  3. Extrahieren Sie den Modulus und den Exponenten. Der öffentliche und der private Schlüssel bestehen jeweils aus einem Modulus und einem Exponenten. Extrahieren Sie den Modulus und den Exponenten aus dem öffentlichen Schlüssel:

    $ openssl rsa -in public_key -pubin -text -noout
    Public-Key: (2048 bit)
    Modulus:
        00:c2:0b:2a:b8:de:08:04:d3:ea:21:49:ee:fa:1f:
        f9:65:ad:64:ba:36:f6:61:18:57:d6:f0:90:55:00:
        24:07:09:d6:8a:07:02:a8:e0:55:7d:16:b9:26:86:
        5f:c7:a2:88:bc:45:e3:5a:a6:bb:ee:33:ef:96:cc:
        4c:e1:63:ea:9c:32:0c:da:a8:8a:df:ab:a9:dd:22:
        a4:63:01:63:7d:fe:85:da:78:bf:af:2f:2f:af:05:
        c2:5f:7b:06:67:58:5b:20:79:4a:d0:ed:35:d8:7a:
        40:dc:84:9e:12:cc:15:66:65:f6:5f:ae:e7:68:eb:
        c9:5d:f6:39:bf:48:46:3d:6a:82:00:36:a8:fb:15:
        71:ae:6c:6c:64:3e:08:5a:72:a5:d5:46:99:cc:8e:
        65:84:0c:eb:f1:fc:3a:ba:d1:f0:c7:51:19:fc:c4:
        a0:b0:49:22:ea:db:a3:71:97:cd:f8:65:03:46:79:
        89:19:04:a7:3d:35:e6:b1:fe:d0:e0:32:ab:79:36:
        64:e3:d7:2e:c8:1d:e9:ad:5f:75:4b:4c:77:0d:88:
        c2:52:94:97:ae:45:72:d4:76:b9:5e:27:06:0f:fa:
        be:ca:cb:6e:16:c2:67:ae:b8:5b:35:72:5b:a5:28:
        cc:ea:c8:e8:fd:a7:6e:02:46:49:97:81:66:3a:dd:
        11:ed
    Exponent: 65537 (0x10001)
    
  4. Codieren Sie den Modulus und den Exponenten. Sie müssen den Modulus und den Exponenten extrahieren und Base64-codieren. Entfernen Sie das führende Nullbyte, bevor Sie den Modulus codieren. Standardmäßig ist die Datei public_key bereits ein Base64-codierter String mit folgendem Aufbau:

    • 32 Byte Header-Informationen
    • 1 Byte mit der führenden Null des Modulus
    • 256 Bytes Modulus
    • 2 Bytes Exponenten-Header
    • 3 Bytes Exponent

    Modulus und Exponent müssen getrennt vom Rest des Dateiinhalts extrahiert und codiert werden. Extrahieren und codieren Sie Modulus und Exponent mit folgenden Befehlen:

    $ cat public_key | grep -v -- ----- | base64 -d | dd bs=1 skip=33 count=256 2>/dev/null | base64 -w 0; echo
            wgsquN4IBNPqIUnu+h/5Za1kujb2YRhX1vCQVQAkBwnWigcCqOBVfRa5JoZfx6KIvEXjWqa77jPvlsx
    M4WPqnDIM2qiK36up3SKkYwFjff6F2ni/ry8vrwXCX3sGZ1hbIHlK0O012HpA3ISeEswVZmX2X67naO
    vJXfY5v0hGPWqCADao+xVxrmxsZD4IWnKl1UaZzI5lhAzr8fw6utHwx1EZ/MSgsEki6tujcZfN+GUDR
    nmJGQSnPTXmsf7Q4DKreTZk49cuyB3prV91S0x3DYjCUpSXrkVy1Ha5XicGD/q+ystuFsJnrrhbNXJb
    pSjM6sjo/aduAkZJl4FmOt0R7Q==
    
    $ cat public_key | grep -v -- ----- | base64 -d | dd bs=1 skip=291 count=3 2>/dev/null | base64
    AQAB
    

    Wenn Sie bei der Codierung des Modulus auf Probleme stoßen, sorgen Sie dafür, dass das führende Nullbyte aus dem Modulus entfernt wurde, bevor Sie versuchen, ihn zu codieren.

  5. Erstellen Sie ein JSON-Objekt mit einem Nutzernamen und Informationen zum öffentlichen Schlüssel. Erstellen Sie ein JSON-Objekt mit folgenden Daten:

    • userName: Der Nutzername für die Anmeldung bei der Instanz.
    • modulus: Der Base64-codierte Modulus des öffentlichen Schlüssels.
    • exponent: Der Base64-codierte Exponent des öffentlichen Schlüssels.
    • email: Die E-Mail-Adresse des Nutzers, der das Passwort anfordert. Dies sollte die E-Mail-Adresse des Google-Kontos sein, das bei der API authentifiziert ist.
    • expireOn: Ein RFC 3399-codierter Zeitstempel, der angibt, wann der Schlüssel ablaufen soll. Diese Zeit sollte in UTC angegeben sein und etwa fünf Minuten in der Zukunft liegen. Da diese Schlüssel nur zum Erzeugen des Nutzernamens und des Passworts verwendet werden, werden sie nach Erstellung des Passworts nicht mehr benötigt. Der Agent verwendet keine Schlüssel, die verfallen sind.

    Beispiel:

    {\"userName\": \"example-user\",  \"modulus\": \"wgsquN4IBNPqIUnu+h/5Za1kujb2YRhX1
    vCQVQAkBwnWigcCqOBVfRa5JoZfx6KIvEXjWqa77jPvlsxM4WPqnDIM2qiK36up3SKkYwFjff6F
    2ni/ry8vrwXCX3sGZ1hbIHlK0O012HpA3ISeEswVZmX2X67naOvJXfY5v0hGPWqCADao+xVxrmx
    sZD4IWnKl1UaZzI5lhAzr8fw6utHwx1EZ/MSgsEki6tujcZfN+GUDRnmJGQSnPTXmsf7Q4DKreT
    Zk49cuyB3prV91S0x3DYjCUpSXrkVy1Ha5XicGD/q+ystuFsJnrrhbNXJbpSjM6sjo/aduAkZJl
    4FmOt0R7Q==\", \"exponent\": \"AQAB\", \"email\": \"example.user@example.com\",
    \"expireOn\": \"2015-04-14T01:37:19Z\"}
    

    Beachten Sie, dass im JSON-String keine Zeilenumbrüche vorkommen sollten.

  6. Fügen Sie das JSON-Objekt zu den Metadaten der Instanz hinzu. Legen Sie die Instanz-Metadaten fest. Verwenden Sie dazu den Metadatenschlüssel windows-keys und das JSON-Objekt als Schlüsselwert.

    Um Instanzmetadaten in der API aktualisieren zu können, müssen Sie bei Ihrer Anfrage einen Fingerabdruck angeben. Holen Sie sich den aktuellen Fingerabdruck der Instanz mit einer GET-Anfrage an die Instanz:

    GET  https://compute.googleapis.com/compute/v1/projects/myproject/zones/us-central1-f/instances/test-windows-auth
    [..snip..]
    "metadata": {
    "kind": "compute#metadata",
    "fingerprint": "5sFotm8Ee0I=",
    "items": [
     {
     …
     }
    [..snip]..
    

    Senden Sie nun eine POST-Anfrage an die Methode setMetadata. Geben Sie dabei den Fingerabdruck und das erstellte JSON-Objekt an:

    POST https://compute.googleapis.com/compute/v1/projects/myproject/zones/us-central1-f/instances/test-windows-auth/setMetadata
    
    {
     "fingerprint": "5sFotm8Ee0I=",
     "items": [
      {
       "value": "{\"userName\": \"example-user\",  \"modulus\": \"wgsquN4IBNPqIUnu+h/5Za1kujb2YRhX1vCQVQAkBwnWigcCqOBVfRa5JoZfx6KIvEXjWqa77jPvlsxM4WPqnDIM2qiK36up3SKkYwFjff6F2ni/ry8vrwXCX3sGZ1hbIHlK0O012HpA3ISeEswVZmX2X67naOvJXfY5v0hGPWqCADao+xVxrmxsZD4IWnKl1UaZzI5lhAzr8fw6utHwx1EZ/MSgsEki6tujcZfN+GUDRnmJGQSnPTXmsf7Q4DKreTZk49cuyB3prV91S0x3DYjCUpSXrkVy1Ha5XicGD/q+ystuFsJnrrhbNXJbpSjM6sjo/aduAkZJl4FmOt0R7Q==\", \"exponent\": \"AQAB\", \"email\": \"user@example.com\", \"expireOn': '2015\"04-14T01:37:19Z\"}\n",
       "key": "windows-keys"
      } ]
    }
    

    Der Name des Schlüssels muss windows-keys sein und der Wert muss auf einen oder mehrere JSON-Strings wie der oben genannte String gesetzt sein. Mehrere Strings werden durch Zeilenumbrüche getrennt. Wenn mehrere Einträge hinzugefügt werden, sorgen Sie dafür, dass der Metadatenwert nicht länger wird als 32 KB.

  7. Lesen Sie die Ausgabe am seriellen Port Nummer 4. Der Agent auf der Instanz nimmt automatisch den Wert von windows-keys und erstellt ein verschlüsseltes Passwort. Das verschlüsselte Passwort erhalten Sie durch Abfrage des seriellen Ports Nummer 4. Stellen Sie in der API eine GET-Anfrage an die Methode getSerialPortOutput und übergeben Sie dabei port=4 als Suchparameter:

    GET https://compute.googleapis.com/compute/v1/projects/myproject/zones/us-central1-f/instances/test-windows-auth/serialPort?port=4
    
    {
     "kind": "compute#serialPortOutput",
     "selfLink": "https://www.googleapis.com/compute/v1/projects/myproject/zones/_/instances/test-api-auth/serialPort",
     "contents": "{\"ready\":true,\"version\":\"Microsoft Windows NT 6.1.7601 Service Pack 1\"}\n{\"encryptedPassword\":\"uiHDEhxyvj6lF5GalH
     h9TsMZb4bG6Y9qGmFb9S3XI29yvVsDCLdp4IbUg21MncHcaxP0rFu0kyjxlEXDs8y4L1KOhy6iyB42Lh+vZ4XIMjmvU4rZrjsBZ5TxQo9hL0lBW7o3FRM\\/UIXCeRk39ObUl2A
     jDmQ0mcw1byJI5v9KVJnNMaHdRCy\\/kvN6bx3qqjIhIMu0JExp4UVkAX2Mxb9b+c4o2DiZF5pY6ZfbuEmjSbvGRJXyswkOJ4jTZl+7e6+SZfEal8HJyRfZKiqTjrz+DLjYSlXr
     fIRqlvKeAFGOJq6IRojNWiTOOh8Zorc0iHDTIkf+MY0scfbBUo5m30Bf4w==\",\"exponent\":\"AQAB\",\"modulus\":\"0tiKdO2JmBHss26jnrSAwb583KG\\/ZIw5Jw
     wMPXrCVsFAPwY1OV3RlT1Hp4Xvpibr7rvJbOC+f\\/Gd0cBrK5pccQfccB+OHKpbBof473zEfRbdtFwPn10RfAFj\\/xikW0r\\/XxgG\\/c8tz9bmALBStGqmwOVOLRHxjwgtG
     u4poeuwmFfG6TuwgCadxpllW74mviFd4LZVSuCSni5YJnBM2HSJ8NP6g1fqI17KDXt2XO\\/7kSItubmMk+HGEXdH4qiugHYewaIf1o4XSQROC8xlRl7t\\/RaD4U58hKYkVwg0
     Ir7WzYzAVpG2UR4Co\\/GDG9Hct7HOYekDqVQ+sSZbwzajnVunkw==\",\"passwordFound\":true,\"userName\":\"example-user\"}\n"
    }
    

    In der Ausgabe des seriellen Ports können mehrere Antworten enthalten sein, die durch Zeilenumbrüche getrennt sind. Um die richtige Antwort zu finden, suchen Sie am Ausgang des seriellen Ports den von Ihnen übergebenen Modulus. Jede Antwort ist ein JSON-codierter String mit folgenden Feldern:

    • userName: Der an die Instanz übergebene Nutzername.
    • passwordFound: Ein boolescher Wert, der angibt, ob die Passworterzeugung erfolgreich war.
    • encryptedPassword: Ein base64-codiertes, verschlüsseltes Passwort.
    • modulus: Der zuvor übergebene Modulus.
    • exponent: Der zuvor übergebene Exponent.

    Informationen zur Aufbewahrung der Ausgabe des seriellen Ports finden Sie unter Ausgabe des seriellen Ports ansehen.

  8. Entschlüsseln Sie das Passwort. Entschlüsseln Sie das verschlüsselte Passwort mit dem zuvor erstellten privaten Schlüssel, um das Passwort zu erhalten. Das Passwort muss mit Optimal Asymmetric Encryption Padding (OAEP) entschlüsselt werden. Für OpenSSL lautet der Befehl zur Entschlüsselung der Eingabedaten:

    $ openssl rsautl -decrypt -inkey private_key -oaep
    

    Geben Sie den encryptedPassword-Wert an, um das obige Passwort zu entschlüsseln. Denken Sie daran, zuvor die Escape-Zeichen \\ aus dem String zu entfernen, da die Entschlüsselung sonst fehlschlägt.

    $ echo 'uiHDEhxyvj6lF5GalHh9TsMZb4bG6Y9qGmFb9S3XI291MncHcaxP0rFu0kyjxlEXDs8y4L1KOhy6iyB42Lh+vZ4XIMjmvU4rZrjsBZ5Tx
    Qo9hL0lBW7o3FRM/UIXCeRk39ObUl2AjDmQ0mcw1byJI5v9KVJnNMaHdRCy/kvN6bx3qqjIhIMu0JExp4UVkAX2Mxb9b+c4o2DiZF5pY6ZfbuEmjS
    bvGRJXyswkOJ4jTZl+7e6+SZfEal8HJyRfZKiqTjrz+DLjYSlXrfIRqlvKeAFGOJq6IRojNWiTOOh8Zorc0iHDTIkf+MY0scfbBUo5m30Bf4w==' |
    base64 -d | openssl rsautl -decrypt -inkey private_key -oaep
    

    Der Befehl gibt das entschlüsselte Passwort aus:

    dDkJ_3]*QYS-#>X
    

    Nutzername und Passwort für dieses Konto wären also:

    username: example-user
    password: dDkJ_3]*QYS-#>X
    
  9. Vernichten Sie die Schlüssel. Im Gegensatz zu SSH-Schlüsseln sind die Schlüssel für das Zurücksetzen bzw. Erzeugen von Windows-Passwörtern nur für kurzfristige Verwendung vorgesehen. Die Wiederverwendung öffentlicher bzw. privater Schlüssel ist nicht zu empfehlen und kann zu unerwarteten Resultaten führen. Falls der Schlüssel auf dem Laufwerk gespeichert worden ist, sollten die jeweiligen Dateien gelöscht werden, wenn der Vorgang abgeschlossen ist. Noch besser ist es, wenn möglich, den Schlüssel nur im Arbeitsspeicher zu behalten und nach Abschluss des Vorgangs zu verwerfen.

Nächste Schritte