Higher network bandwidths can improve the performance of your distributed workloads running on Compute Engine virtual machine (VM) instances.
Overview
The maximum network bandwidth that is available for VMs with attached GPUs on Compute Engine is as follows:
- For A3 accelerator-optimized VMs, you can get a maximum network bandwidth of up to 1,800 Gbps.
- For A2 and G2 accelerator-optimized VMs, you can get a maximum network bandwidth of up to 100 Gbps, based on the machine type.
- For N1 general-purpose VMs that have P100 and P4 GPUs attached, a maximum network bandwidth of 32 Gbps is available. This is similar to the maximum rate available to N1 VMs that don't have GPUs attached. For more information about network bandwidths, see maximum egress data rate.
- For N1 general-purpose VMs that have T4 and V100 GPUs attached, you can get a maximum network bandwidth of up to 100 Gbps, based on the combination of GPU and vCPU count.
Network bandwidth and Google Virtual NIC (gVNIC)
To get the higher network bandwidth rates (50 Gbps or higher) applied to your GPU VMs, it is recommended that you use Google Virtual NIC (gVNIC). For more information about creating GPU VMs that use gVNIC, see Creating GPU VMs that use higher bandwidths.
Accelerator-optimized VMs
This section outlines the maximum network bandwidth available for A3, A2, and G2 accelerator-optimized VMs.
A3 VMs
Each A3 machine type has a fixed number of NVIDIA H100 80GB GPUs attached, a fixed vCPU count, and a fixed VM memory size.
- Single NIC A3 VMs: For A3 VMs with 1 to 4 GPUs attached, only a single physical network interface card (NIC) is available.
- Multi-NIC A3 VMs: For A3 VMs with 8 GPUS attached,
multiple physical NICs are available. For these A3 machine types the NICs are arranged as follows on
a Peripheral Component Interconnect Express (PCIe) bus:
- For the A3 Mega machine type: a NIC arrangement of 8+1 is available. With this arrangement, 8 NICs share the same PCIe bus, and 1 NIC resides on a separate PCIe bus.
- For the A3 High machine type: a NIC arrangement of 4+1 is available. With this arrangement, 4 NICs share the same PCIe bus, and 1 NIC resides on a separate PCIe bus.
- For the A3 Edge machine type machine type: a NIC arrangement of 4+1 is available. With this arrangement, 4 NICs share the same PCIe bus, and 1 NIC resides on a separate PCIe bus. These 5 NICs provide a total network bandwidth of 400 Gbps for each VM.
NICs that share the same PCIe bus, have a non-uniform memory access (NUMA) alignment of one NIC per two NVIDIA H100 80GB GPUs. These NICs are ideal for dedicated high bandwidth GPU to GPU communication. The physical NIC that resides on a separate PCIe bus is ideal for other networking needs.
A3 Mega
Machine type | GPU count | GPU memory* (GB HBM3) |
vCPU count† | VM memory (GB) | Attached Local SSD (GiB) | Physical NIC count | Maximum network bandwidth (Gbps)‡ | Network protocol |
---|---|---|---|---|---|---|---|---|
a3-megagpu-8g |
8 | 640 | 208 | 1,872 | 6,000 | 9 | 1,800 | GPUDirect-TCPXO |
A3 High
a3-highgpu-1g
, a3-highgpu-2g
, or a3-highgpu-4g
machine types,
you must either use Spot VMs or a feature that uses the
Dynamic Workload Scheduler (DWS)
such as resize requests in a MIG. For detailed instructions on either of these options, review the
following:
- To create Spot VMs, see
Create an accelerator-optimized VM
and remember to set the provisiong model to
SPOT
- To create a resize request in a MIG, which uses Dynamic Workload Scheduler, see Create a MIG with GPU VMs.
Machine type | GPU count | GPU memory* (GB HBM3) |
vCPU count† | VM memory (GB) | Attached Local SSD (GiB) | Physical NIC count | Maximum network bandwidth (Gbps)‡ | Network protocol |
---|---|---|---|---|---|---|---|---|
a3-highgpu-1g |
1 | 80 | 26 | 234 | 750 | 1 | 25 | GPUDirect-TCPXO |
a3-highgpu-2g |
2 | 160 | 52 | 468 | 1,500 | 1 | 50 | GPUDirect-TCPXO |
a3-highgpu-4g |
4 | 320 | 104 | 936 | 3,000 | 1 | 100 | GPUDirect-TCPXO |
a3-highgpu-8g |
8 | 640 | 208 | 1,872 | 6,000 | 5 | 800 | GPUDirect-TCPXO |
A3 Edge
Machine type | GPU count | GPU memory* (GB HBM3) |
vCPU count† | VM memory (GB) | Attached Local SSD (GiB) | Physical NIC count | Maximum network bandwidth (Gbps)‡ | Network protocol |
---|---|---|---|---|---|---|---|---|
a3-edgegpu-8g |
8 | 640 | 208 | 1,872 | 6,000 | 5 |
|
GPUDirect-TCPXO |
*GPU memory is the memory on a GPU device that can be used for
temporary storage of data. It is separate from the VM's memory and is
specifically designed to handle the higher bandwidth demands of your
graphics-intensive workloads.
†A vCPU is implemented as a single hardware hyper-thread on one of
the available CPU platforms.
‡Maximum egress bandwidth cannot exceed the number given. Actual
egress bandwidth depends on the destination IP address and other factors.
See Network bandwidth.
A2 VMs
Each A2 machine type has a fixed number of NVIDIA A100 40GB or NVIDIA A100 80 GB GPUs attached. Each machine type also has a fixed vCPU count and memory size.
A2 machine series are available in two types:
- A2 Ultra: these machine types have A100 80GB GPUs and Local SSD disks attached.
- A2 Standard: these machine types have A100 40GB GPUs attached.
A2 Ultra
Machine type | GPU count | GPU memory* (GB HBM3) |
vCPU count† | VM memory (GB) | Attached Local SSD (GiB) | Maximum network bandwidth (Gbps)‡ |
---|---|---|---|---|---|---|
a2-ultragpu-1g |
1 | 80 | 12 | 170 | 375 | 24 |
a2-ultragpu-2g |
2 | 160 | 24 | 340 | 750 | 32 |
a2-ultragpu-4g |
4 | 320 | 48 | 680 | 1,500 | 50 |
a2-ultragpu-8g |
8 | 640 | 96 | 1,360 | 3,000 | 100 |
A2 Standard
Machine type | GPU count | GPU memory* (GB HBM3) |
vCPU count† | VM memory (GB) | Attached Local SSD (GiB) | Maximum network bandwidth (Gbps)‡ |
---|---|---|---|---|---|---|
a2-highgpu-1g |
1 | 40 | 12 | 85 | Yes | 24 |
a2-highgpu-2g |
2 | 80 | 24 | 170 | Yes | 32 |
a2-highgpu-4g |
4 | 160 | 48 | 340 | Yes | 50 |
a2-highgpu-8g |
8 | 320 | 96 | 680 | Yes | 100 |
a2-megagpu-16g |
16 | 640 | 96 | 1,360 | Yes | 100 |
*GPU memory is the memory on a GPU device that can be used for
temporary storage of data. It is separate from the VM's memory and is
specifically designed to handle the higher bandwidth demands of your
graphics-intensive workloads.
†A vCPU is implemented as a single hardware hyper-thread on one of
the available CPU platforms.
‡Maximum egress bandwidth cannot exceed the number given. Actual
egress bandwidth depends on the destination IP address and other factors.
See Network bandwidth.
G2 VM configuration
Each G2 machine type has a fixed number of NVIDIA L4 GPUs and vCPUs attached. Each G2 machine type also has a default memory and a custom memory range. The custom memory range defines the amount of memory that you can allocate to your VM for each machine type. You can specify your custom memory during VM creation.
Machine type | GPU count | GPU memory* (GB GDDR6) | vCPU count† | Default VM memory (GB) | Custom VM memory range (GB) | Max Local SSD supported (GiB) | Maximum network bandwidth (Gbps)‡ |
---|---|---|---|---|---|---|---|
g2-standard-4 |
1 | 24 | 4 | 16 | 16 to 32 | 375 | 10 |
g2-standard-8 |
1 | 24 | 8 | 32 | 32 to 54 | 375 | 16 |
g2-standard-12 |
1 | 24 | 12 | 48 | 48 to 54 | 375 | 16 |
g2-standard-16 |
1 | 24 | 16 | 64 | 54 to 64 | 375 | 32 |
g2-standard-24 |
2 | 48 | 24 | 96 | 96 to 108 | 750 | 32 |
g2-standard-32 |
1 | 24 | 32 | 128 | 96 to 128 | 375 | 32 |
g2-standard-48 |
4 | 96 | 48 | 192 | 192 to 216 | 1,500 | 50 |
g2-standard-96 |
8 | 192 | 96 | 384 | 384 to 432 | 3,000 | 100 |
*GPU memory is the memory on a GPU device that can be used for
temporary storage of data. It is separate from the VM's memory and is
specifically designed to handle the higher bandwidth demands of your
graphics-intensive workloads.
†A vCPU is implemented as a single hardware hyper-thread on one of
the available CPU platforms.
‡Maximum egress bandwidth cannot exceed the number given. Actual
egress bandwidth depends on the destination IP address and other factors.
See Network bandwidth.
N1 GPU VMs
For N1 general-purpose VMs that have T4 and V100 GPUs attached, you can get a maximum network bandwidth of up to 100 Gbps, based on the combination of GPU and vCPU count. For all other N1 GPU VMs, see Overview.
Review the following section to calculate the maximum network bandwidth that is available for your T4 and V100 VMs based on the GPU model, vCPU, and GPU count.
Less than 5 vCPUs
For T4 and V100 VMs that have 5 vCPUs or less, a maximum network bandwidth of 10 Gbps is available.
More than 5 vCPUs
For T4 and V100 VMs that have more than 5 vCPUs, maximum network bandwidth is calculated based on the number of vCPUs and GPUs for that VM.
GPU model | Number of GPUs | Maximum network bandwidth calculation |
---|---|---|
NVIDIA V100 | 1 | min(vcpu_count * 2, 32) |
2 | min(vcpu_count * 2, 32) |
|
4 | min(vcpu_count * 2, 50) |
|
8 | min(vcpu_count * 2, 100) |
|
NVIDIA T4 | 1 | min(vcpu_count * 2, 32) |
2 | min(vcpu_count * 2, 50) |
|
4 | min(vcpu_count * 2, 100) |
Create high bandwidth VMs
To create VMs that use higher network bandwidths, see Use higher network bandwidth.
To test or verify the bandwidth speed for any configuration, you can use the benchmarking test. For more information, see Checking network bandwidth.
What's next?
- Learn more about GPU platforms.
- Learn how to create VMs with attached GPUs.
- Learn about Use higher network bandwidth.
- Learn about GPU pricing.