Neste documento, explicamos como criar uma VM que usa uma família de máquinas com otimização de aceleradores. A família de máquinas com otimização para acelerador está disponível nos modelos tipos de máquina A3, A2 e G2.
Cada tipo de máquina com otimização de acelerador tem um modelo específico de GPUs NVIDIA anexado.
- Para os tipos de máquina com otimização de aceleradores A3, há GPUs NVIDIA H100 de 80 GB
conectadas. Elas estão disponíveis nas seguintes opções:
- A3 Mega: esses tipos de máquina têm GPUs H100 de 80 GB anexadas
- A3 High: esses tipos de máquina têm GPUs H100 de 80 GB anexadas
- A3 Edge: esses tipos de máquina têm GPUs H100 de 80 GB anexadas
- Para tipos de máquina otimizados para aceleradores A2, as GPUs NVIDIA A100
estão anexadas. Elas estão disponíveis nas seguintes opções:
- A2 Ultra: esses tipos de máquina têm GPUs A100 de 80 GB anexadas
- A2 Standard: esses tipos de máquina têm GPUs A100 de 40 GB anexadas
- Para os tipos de máquina otimizados para acelerador G2, as GPUs NVIDIA L4 estão anexadas.
Antes de começar
- Para analisar outras etapas de pré-requisito, como selecionar uma imagem do SO e verificar a cota da GPU, consulte o documento de visão geral.
-
Configure a autenticação, caso ainda não tenha feito isso.
A autenticação é
o processo de verificação da sua identidade para acesso a serviços e APIs do Google Cloud.
Para executar códigos ou amostras de um ambiente de desenvolvimento local, autentique-se no
Compute Engine selecionando uma das seguintes opções:
Select the tab for how you plan to use the samples on this page:
Console
When you use the Google Cloud console to access Google Cloud services and APIs, you don't need to set up authentication.
gcloud
-
Install the Google Cloud CLI, then initialize it by running the following command:
gcloud init
- Set a default region and zone.
-
compute.instances.create
no projeto -
Usar uma imagem personalizada a fim de criar a VM:
compute.images.useReadOnly
na imagem -
Usar um snapshot para criar a VM:
compute.snapshots.useReadOnly
no snapshot -
Usar um modelo de instância para criar a VM:
compute.instanceTemplates.useReadOnly
no modelo de instância -
Atribuir uma rede legada à VM:
compute.networks.use
no projeto -
Especificar um endereço IP estático para a VM:
compute.addresses.use
no projeto -
Atribuir um endereço IP externo à VM ao usar uma rede legada:
compute.networks.useExternalIp
no projeto -
Especificar uma sub-rede para a VM:
compute.subnetworks.use
no projeto ou na sub-rede escolhida -
Atribuir um endereço IP externo à VM ao usar uma rede VPC:
compute.subnetworks.useExternalIp
no projeto ou na sub-rede escolhida -
Definir os metadados da instância de VM para a VM:
compute.instances.setMetadata
no projeto -
Definir tags para a VM:
compute.instances.setTags
na VM -
Definir rótulos para a VM:
compute.instances.setLabels
na VM -
Definir uma conta de serviço a ser usada pela VM:
compute.instances.setServiceAccount
na VM -
Criar um disco para a VM:
compute.disks.create
no projeto -
Anexar um disco atual no modo somente leitura ou de leitura e gravação:
compute.disks.use
no disco -
Anexar um disco atual no modo somente leitura:
compute.disks.useReadOnly
no disco No console do Google Cloud, acesse a página Criar uma instância.
Especifique um Nome para sua VM. Consulte a Convenção de nomenclatura de recursos.
Selecione uma região e uma zona em que as GPUs estejam disponíveis. Confira a lista de regiões e zonas de GPU disponíveis.
Na seção Configuração da máquina, selecione a família de máquinas GPU e faça o seguinte:
Na lista Tipo de GPU, selecione o tipo de GPU.
- Para VMs com otimização de aceleradores A3, selecione
NVIDIA H100 80GB
ouNVIDIA H100 80GB MEGA
. - Para VMs com otimização de aceleradores A2, selecione
NVIDIA A100 40GB
ouNVIDIA A100 80GB
. - Para VMs otimizadas para acelerador G2, selecione
NVIDIA L4
.
- Para VMs com otimização de aceleradores A3, selecione
Na lista Número de GPUs, selecione o número de GPUs.
Se o modelo de GPU for compatível com estação de trabalho virtual NVIDIA RTX (vWS) para cargas de trabalho gráficas e você planeja executar cargas de trabalho com muitos gráficos nessa VM, selecione Ativar Estação de trabalho virtual (NVIDIA GRID)
Na seção Disco de inicialização, clique em Alterar. A página Configuração do disco de inicialização será aberta.
Na página Configuração do disco de inicialização, faça o seguinte:
- Na guia Imagens públicas, escolha uma imagem do Compute Engine compatível ou Deep Learning VM Images.
- Especifique um tamanho do disco de inicialização de pelo menos 40 GB.
- Para confirmar as opções do disco de inicialização, clique em Selecionar.
Opcional: configure o modelo de provisionamento. Por exemplo, se a carga de trabalho for tolerante a falhas e resistente a possíveis preempções da VM, use as VMs do Spot para reduzir o custo das VMs e das GPUs anexadas. Para mais informações, consulte GPUs em VMs spot. Para isso, siga as seguintes etapas:
- Na seção Políticas de disponibilidade, selecione Spot na lista Modelo de provisionamento de VM. Essa configuração desativa as opções de reinicialização automática e manutenção de host para a VM.
- Opcional: na lista No encerramento da VM, selecione o que acontecerá quando o Compute Engine encerrar a VM:
- Para interromper a VM durante a preempção, selecione Parar (padrão).
- Para excluir a VM durante a preempção, selecione Excluir.
Para criar e iniciar a VM, clique em Criar.
- A flag
--provisioning-model=SPOT
, que configura suas VMs como VMs spot. Se a carga de trabalho for tolerante a falhas e resistente a possíveis preempções da VM, use as VMs spot para reduzir o custo das VMs e das GPUs anexadas. Para mais informações, consulte GPUs em VMs spot. Para VMs do Spot, as flags de opções de reinicialização automática e manutenção do host estão desativadas. - A sinalização
--accelerator
para especificar uma estação de trabalho virtual. A NVIDIA RTX Virtual Workstations (vWS) é compatível apenas com VMs do G2. VM_NAME
: o nome da nova VM;MACHINE_TYPE
: o tipo de máquina selecionado. Escolha uma das seguintes opções:- Um tipo de máquina A3.
- Um tipo de máquina A2
- Um tipo de máquina G2
Os tipos de máquina G2 também oferecem suporte a memória personalizada. A memória precisa ser um múltiplo de 1.024 MB e estar dentro do intervalo de memória compatível. Por exemplo, para criar uma VM
com 4 vCPUs e 19 GB de memória, especifique
--machine-type=g2-custom-4-19456
.
ZONE
: a zona para a VM. Essa zona precisa ser compatível com o modelo de GPU selecionado.DISK_SIZE
: o tamanho do disco de inicialização em GB Especifique um tamanho do disco de inicialização de pelo menos 40 GB.IMAGE
: uma imagem de sistema operacional compatível com GPUs. Se você quiser usar a imagem mais recente em uma família de imagens, substitua a sinalização--image
pela sinalização--image-family
e defina o valor dela como uma imagem família compatível com GPUs. Exemplo:--image-family=rocky-linux-8-optimized-gcp
.
Também é possível especificar uma imagem personalizada ou Deep Learning VM ImagesIMAGE_PROJECT
: o projeto de imagem do Compute Engine a que a imagem do SO pertence. Se estiver usando uma imagem personalizada ou Deep Learning VM Images, especifique o projeto a que essas imagens pertencem.VWS_ACCELERATOR_COUNT
: o número necessário de GPUs virtuais.VM_NAME
: o nome da nova VM;PROJECT_ID
: o ID do projeto.ZONE
: a zona para a VM. Essa zona precisa ser compatível com o modelo de GPU selecionado.MACHINE_TYPE
: o tipo de máquina selecionado. Escolha uma das seguintes opções:- Um tipo de máquina A3.
- Um tipo de máquina A2
- Um tipo de máquina G2
Os tipos de máquina G2 também oferecem suporte a memória personalizada. A memória precisa ser um múltiplo de 1.024 MB e estar dentro do intervalo de memória compatível. Por exemplo, para criar uma VM
com 4 vCPUs e 19 GB de memória, especifique
--machine-type=g2-custom-4-19456
.
SOURCE_IMAGE_URI
: o URI da imagem ou família de imagens específica que você quer usar. Exemplo:- Imagem específica:
"sourceImage": "projects/rocky-linux-cloud/global/images/rocky-linux-8-optimized-gcp-v20220719"
- Família de imagens:
"sourceImage": "projects/rocky-linux-cloud/global/images/family/rocky-linux-8-optimized-gcp"
DISK_SIZE
: o tamanho do disco de inicialização em GB Especifique um tamanho do disco de inicialização de pelo menos 40 GB.NETWORK
: a rede VPC que você quer usar para a VM. Você pode especificar para usar sua rede padrão.- Se a carga de trabalho for tolerante a falhas e resistente a possíveis
preempções da VM, use as VMs spot para reduzir o custo das
VMs e das GPUs anexadas. Para mais informações, consulte
GPUs em VMs spot.
Para especificar VMs spot, adicione a opção
"provisioningModel": "SPOT"
à solicitação. Para VMs do Spot, as flags de opções de reinicialização automática e manutenção do host estão desativadas."scheduling": { "provisioningModel": "SPOT" }
- Para VMs G2, a NVIDIA RTX Virtual Workstations (vWS) é compatível. Para especificar uma estação de trabalho virtual, adicione a opção "guestAccelerators" à sua solicitação.
Substitua
VWS_ACCELERATOR_COUNT
pelo número de GPUs virtuais necessárias."guestAccelerators": [ { "acceleratorCount": VWS_ACCELERATOR_COUNT, "acceleratorType": "projects/PROJECT_ID/zones/ZONEacceleratorTypes/nvidia-l4-vws" } ]
- Você não recebe descontos por uso prolongado e descontos por compromisso de uso flexível no caso de VMs que usam tipos de máquina A3.
- Só é possível usar os tipos de máquinas A3 em determinadas regiões e zonas.
- Não é possível usar discos permanentes regionais em VMs que usam tipos de máquina A3.
- A série de máquinas A3 só está disponível na plataforma Sapphire Rapids.
- Se a VM usar um tipo de máquina A3, não será possível alterar o tipo. Se você precisar alterar o tipo de máquina, crie uma nova VM.
- Não é possível alterar o tipo de máquina de uma VM para um tipo de máquina A3. Se você precisar de uma VM que usa um tipo de máquina A3, você precisa criar uma nova VM.
- Os tipos de máquina A3 não dão suporte a locatários individuais.
- Não é possível executar sistemas operacionais Windows em tipos de máquina A3.
- Só é possível reservar tipos de máquina A3 por meio de determinadas reservas.
- Para os tipos de máquina
a3-highgpu-1g
,a3-highgpu-2g
ea3-highgpu-4g
, as seguintes limitações se aplicam:-
Para esses tipos de máquina,
é necessário usar VMs spot ou um recurso que use o
Dynamic Workload Scheduler (DWS),
como solicitações de redimensionamento em um MIG. Para instruções detalhadas sobre essas opções, consulte o
seguinte:
- Para criar VMs do Spot, consulte
Criar uma VM otimizada para aceleradores
e defina o modelo de provisionamento como
SPOT
. - Para criar uma solicitação de redimensionamento em um MIG que usa o Dynamic Workload Scheduler, consulte Criar um MIG com VMs de GPU.
- Para criar VMs do Spot, consulte
Criar uma VM otimizada para aceleradores
e defina o modelo de provisionamento como
- Não é possível usar o Hyperdisk Balanced com estes tipos de máquina.
- Não é possível criar reservas.
-
Para esses tipos de máquina,
é necessário usar VMs spot ou um recurso que use o
Dynamic Workload Scheduler (DWS),
como solicitações de redimensionamento em um MIG. Para instruções detalhadas sobre essas opções, consulte o
seguinte:
- Você não recebe descontos por uso prolongado e descontos por compromisso de uso flexível no caso de VMs que usam tipos de máquina A2 padrão.
- Só é possível usar tipos de máquina padrão A2 em determinadas regiões e zonas.
- Não é possível usar discos permanentes regionais em VMs que usam tipos de máquina A2 padrão.
- Os tipos de máquina A2 padrão só estão disponíveis na plataforma Cascade Lake.
- Se a VM usa um tipo de máquina padrão A2, só é possível trocar esse tipo A2 padrão por outro tipo A2 padrão. Não é possível mudar para outro tipo de máquina. Para mais informações, consulte Modificar VMs otimizadas para aceleradores.
- Você não pode usar o sistema operacional Windows com tipos de máquina A2 <codea2-megagpu-16g< code="" dir="ltr" translate="no">. Ao usar sistemas operacionais Windows, escolha um tipo de máquina diferente do padrão A2.</codea2-megagpu-16g<>
- Não é possível fazer um formato rápido dos SSDs locais anexados em VMs do Windows que usam tipos de máquina padrão A2. Para formatar esses SSDs locais, é preciso usar
o utilitário diskpart
e especificar
format fs=ntfs label=tmpfs
. - Os tipos de máquina A2 padrão não dão suporte a locatários individuais.
- Você não recebe descontos por uso prolongado e descontos por compromisso de uso flexível no caso de VMs que usam tipos de máquina A2 ultra.
- Você só pode usar tipos de máquinas A2 ultra em determinadas regiões e zonas.
- Não é possível usar discos permanentes regionais em VMs que usam tipos de máquina A2 ultra.
- Os tipos de máquina A2 ultra só estão disponíveis na plataforma Cascade Lake.
- Se a VM usa um tipo de máquina ultra A2, não é possível mudar o tipo de máquina. Se você precisar usar outro tipo de máquina ultra A2 ou qualquer outro tipo de máquina, crie uma nova VM.
- Não é possível trocar nenhum tipo de máquina por um tipo de máquina A2 ultra. Se você precisar de uma VM que use uma série de máquinas A2 ultra, crie uma nova VM.
- Não é possível fazer um formato rápido dos SSDs locais anexados em VMs do Windows que usam tipos de máquina A2 ultra. Para formatar esses SSDs locais, é preciso usar
o utilitário diskpart
e especificar
format fs=ntfs label=tmpfs
. - Você não recebe descontos por uso prolongado e descontos por compromisso de uso flexível no caso de VMs que usam tipos de máquina A2.
- Só é possível usar os tipos de máquinas G2 em determinadas regiões e zonas.
- Não é possível usar discos permanentes regionais em VMs que usam tipos de máquina G2.
- Os tipos de máquina G2 só estão disponíveis na plataforma Cascade Lake.
- Os discos permanentes padrão (
pd-standard
) não são compatíveis com VMs que usam tipos de máquina padrão G2. Para saber quais são os tipos de disco compatíveis, consulte Tipos de disco compatíveis com a G2. - Não é possível criar GPUs de várias instâncias nos tipos de máquina G2.
- Se precisar mudar o tipo de máquina de uma VM G2, consulte Modificar VMs otimizadas para aceleradores.
- Não é possível usar o Deep Learning VM Images como discos de inicialização para suas VMs que usam os tipos de máquina G2.
- O driver padrão atual para o Container-Optimized OS não oferece suporte a GPUs L4 em execução nos tipos de máquina G2. O Container-Optimized OS também é compatível apenas com um conjunto selecionado de drivers.
Se você quiser usar o Container-Optimized OS em tipos de máquina G2, leia as seguintes observações:
- Use uma versão do Container-Optimized OS que seja compatível com a versão mínima recomendada do driver NVIDIA ou
525.60.13
. Para mais informações, consulte as Notas de lançamento do Container-Optimized OS. - Ao instalar o driver,
especifique a versão mais recente disponível que funciona para as GPUs L4.
Por exemplo,
sudo cos-extensions install gpu -- -version=525.60.13
.
- Use uma versão do Container-Optimized OS que seja compatível com a versão mínima recomendada do driver NVIDIA ou
- Use a CLI do Google Cloud ou REST para criar VMs G2 nos seguintes cenários:
- Você quer especificar valores de memória personalizados.
- Você quer personalizar o número de núcleos de CPU visíveis.
- Deep Learning VM Images Este exemplo usa
a VM padrão A2 (
a2-highgpu-1g
). - Imagem do Container-Optimized OS (COS).
Este exemplo usa uma VM
a3-highgpu-8g
oua3-edgegpu-8g
. Imagem pública. Este exemplo usa uma VM G2.
Crie a VM. Neste exemplo, as sinalizações opcionais, como o tipo e o tamanho do disco de inicialização, também são especificadas.
gcloud compute instances create VM_NAME \ --project=PROJECT_ID \ --zone=ZONE \ --machine-type=g2-standard-8 \ --maintenance-policy=TERMINATE --restart-on-failure \ --network-interface=nic-type=GVNIC \ --accelerator=type=nvidia-l4-vws,count=1 \ --image-family=rocky-linux-8-optimized-gcp \ --image-project=rocky-linux-cloud \ --boot-disk-size=200GB \ --boot-disk-type=pd-ssd
Substitua:
VM_NAME
: o nome da VM.PROJECT_ID
: o ID do projeto.ZONE
: a zona para a VM.
Instale o driver NVIDIA e o CUDA. Para GPUs NVIDIA L4, a versão XX de CUDA é necessária.
common-cu110
: driver NVIDIA e CUDA pré-instaladostf-ent-1-15-cu110
: driver NVIDIA, CUDA, TensorFlow Enterprise 1.15.3 pré-instaladostf2-ent-2-1-cu110
: driver NVIDIA, CUDA, TensorFlow Enterprise 2.1.1 pré-instaladostf2-ent-2-3-cu110
: driver NVIDIA, CUDA, TensorFlow Enterprise 2.3.1 pré-instaladospytorch-1-6-cu110
: driver NVIDIA, CUDA, Pytorch 1.6Crie uma VM usando a imagem
tf2-ent-2-3-cu110
e o tipo de máquinaa2-highgpu-1g
. Neste exemplo, são especificadas as sinalizações opcionais, como tamanho e escopo do disco de inicialização.gcloud compute instances create VM_NAME \ --project PROJECT_ID \ --zone ZONE \ --machine-type a2-highgpu-1g \ --maintenance-policy TERMINATE \ --image-family tf2-ent-2-3-cu110 \ --image-project deeplearning-platform-release \ --boot-disk-size 200GB \ --metadata "install-nvidia-driver=True,proxy-mode=project_editors" \ --scopes https://www.googleapis.com/auth/cloud-platform
Substitua:
VM_NAME
: o nome da VM.PROJECT_ID
: o ID do projeto.ZONE
: a zona da VM.
O comando de exemplo anterior também gera uma instância de notebooks gerenciados pelo usuário do Vertex AI Workbench para a VM. Para acessar o notebook, no console do Google Cloud, acesse a página Vertex AI Workbench > Notebooks gerenciados pelo usuário.
Crie uma VM com otimização de aceleradores A3 ou A2.
Ative os drivers de GPU NVIDIA.
Ative as GPUs com várias instâncias.
sudo nvidia-smi -mig 1
Revise os formatos de GPU com várias instâncias disponíveis.
sudo nvidia-smi mig --list-gpu-instance-profiles
A resposta será semelhante a:
+-----------------------------------------------------------------------------+ | GPU instance profiles: | | GPU Name ID Instances Memory P2P SM DEC ENC | | Free/Total GiB CE JPEG OFA | |=============================================================================| | 0 MIG 1g.10gb 19 7/7 9.62 No 16 1 0 | | 1 1 0 | +-----------------------------------------------------------------------------+ | 0 MIG 1g.10gb+me 20 1/1 9.62 No 16 1 0 | | 1 1 1 | +-----------------------------------------------------------------------------+ | 0 MIG 1g.20gb 15 4/4 19.50 No 26 1 0 | | 1 1 0 | +-----------------------------------------------------------------------------+ | 0 MIG 2g.20gb 14 3/3 19.50 No 32 2 0 | | 2 2 0 | +-----------------------------------------------------------------------------+ | 0 MIG 3g.40gb 9 2/2 39.25 No 60 3 0 | | 3 3 0 | +-----------------------------------------------------------------------------+ .......
Crie a GPU de várias instâncias (GI, na sigla em inglês) e as instâncias de computação (CI, na sigla em inglês) associadas que você quer. Para criar essas instâncias, especifique o nome completo ou abreviado do perfil, o ID do perfil ou uma combinação de ambos. Para saber mais, consulte Como criar instâncias de GPU.
O exemplo a seguir cria duas instâncias de GPU
MIG 3g.20gb
usando o ID do perfil (9
).A flag
-C
também é especificada, a fim de criar as instâncias de computação associadas para o perfil necessário.sudo nvidia-smi mig -cgi 9,9 -C
Verifique se as duas GPUs de várias instâncias foram criadas:
sudo nvidia-smi mig -lgi
Verifique se as GIs e as CIs correspondentes foram criadas.
sudo nvidia-smi
A resposta será semelhante a:
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA H100 80G... Off | 00000000:04:00.0 Off | On | | N/A 33C P0 70W / 700W | 39MiB / 81559MiB | N/A Default | | | | Enabled | +-------------------------------+----------------------+----------------------+ | 1 NVIDIA H100 80G... Off | 00000000:05:00.0 Off | On | | N/A 32C P0 69W / 700W | 39MiB / 81559MiB | N/A Default | | | | Enabled | +-------------------------------+----------------------+----------------------+ ...... +-----------------------------------------------------------------------------+ | MIG devices: | +------------------+----------------------+-----------+-----------------------+ | GPU GI CI MIG | Memory-Usage | Vol| Shared | | ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG| | | | ECC| | |==================+======================+===========+=======================| | 0 1 0 0 | 19MiB / 40192MiB | 60 0 | 3 0 3 0 3 | | | 0MiB / 65535MiB | | | +------------------+----------------------+-----------+-----------------------+ | 0 2 0 1 | 19MiB / 40192MiB | 60 0 | 3 0 3 0 3 | | | 0MiB / 65535MiB | | | +------------------+----------------------+-----------+-----------------------+ ...... +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
- Saiba mais sobre as plataformas de GPU.
- Adicione SSDs locais a instâncias. Dispositivos SSD locais funcionam bem com GPUs quando os aplicativos exigem armazenamento de alto desempenho.
- Instale os drivers da GPU.
- Se você ativou a estação de trabalho virtual NVIDIA RTX, instale um driver para a estação de trabalho virtual.
- Para lidar com a manutenção do host da GPU, consulte "Como manipular eventos de manutenção do host da GPU".
REST
Para usar as amostras da API REST nesta página em um ambiente de desenvolvimento local, use as credenciais fornecidas para gcloud CLI.
Install the Google Cloud CLI, then initialize it by running the following command:
gcloud init
Para mais informações, consulte Autenticar para usar REST na documentação de autenticação do Google Cloud.
Funções exigidas
Para receber as permissões necessárias para criar VMS, peça ao administrador para conceder a você o papel do IAM de Administrador da instância da computação (v1) (
roles/compute.instanceAdmin.v1
) no projeto. Para mais informações sobre a concessão de papéis, consulte Gerenciar o acesso a projetos, pastas e organizações.Esse papel predefinido contém as permissões necessárias para criar VMs. Para conferir as permissões exatas necessárias, expanda a seção Permissões necessárias:
Permissões necessárias
As permissões a seguir são necessárias para criar VMs:
Essas permissões também podem ser concedidas com funções personalizadas ou outros papéis predefinidos.
Criar uma VM com GPUs anexadas
É possível criar uma VM com otimização de aceleradores A3, A2 ou G2 usando o console do Google Cloud, a CLI do Google Cloud ou REST.
Para fazer algumas personalizações nas VMs G2, talvez seja necessário usar a CLI do Google Cloud ou REST. Consulte as limitações da G2.
Console
gcloud
Para criar e iniciar uma VM, use o comando
gcloud compute instances create
com as sinalizações a seguir. Não é possível migrar VMs com GPUs em tempo real. Defina a sinalização--maintenance-policy=TERMINATE
.As seguintes sinalizações opcionais são mostradas no comando de amostra:
Substitua:gcloud compute instances create VM_NAME \ --machine-type=MACHINE_TYPE \ --zone=ZONE \ --boot-disk-size=DISK_SIZE \ --image=IMAGE \ --image-project=IMAGE_PROJECT \ --maintenance-policy=TERMINATE \ [--provisioning-model=SPOT] \ [--accelerator=type=nvidia-l4-vws,count=VWS_ACCELERATOR_COUNT]
REST
Envie uma solicitação POST ao método
instances.insert
. VMs com GPUs não podem ser migradas em tempo real, verifique se você define o parâmetroonHostMaintenance
comoTERMINATE
. Substitua o seguinte:POST https://compute.googleapis.com/compute/v1/projects/PROJECT_ID/zones/ZONE/instances { "machineType": "projects/PROJECT_ID/zones/ZONE/machineTypes/MACHINE_TYPE", "disks": [ { "type": "PERSISTENT", "initializeParams": { "diskSizeGb": "DISK_SIZE", "sourceImage": "SOURCE_IMAGE_URI" }, "boot": true } ], "name": "VM_NAME", "networkInterfaces": [ { "network": "projects/PROJECT_ID/global/networks/NETWORK" } ], "scheduling": { "onHostMaintenance": "terminate", ["automaticRestart": true] }, }
Limitações
VMs A3
As limitações a seguir se aplicam a VMs que usam os tipos de máquina A3 Edge, A3 High e A3 Mega:
VMs A2 padrão
VMs A2 ultra
VMs G2
Instalar drivers
Para que a VM use a GPU, é necessário instalar o driver da GPU na VM.
Exemplos
Nestes exemplos, a maioria das VMs é criada usando a CLI do Google Cloud. No entanto, também é possível usar o console do Google Cloud ou o REST para criar essas VMs.
Os exemplos a seguir mostram como criar VMs usando as seguintes imagens:
COS (A3 Edge/High)
É possível criar VMs
a3-edgegpu-8g
oua3-highgpu-8g
com GPUs H100 anexadas usando imagens otimizadas para contêiner (COS).Para instruções detalhadas sobre como criar essas VMs
a3-edgegpu-8g
oua3-highgpu-8g
que usam o Container-Optimized OS, consulte Criar uma VM A3 com o GPUDirect-TCPX ativado.Imagem do SO público (G2)
É possível criar VMs com GPUs anexadas que usam uma imagem pública disponível no Compute Engine ou uma imagem personalizada.
Para criar uma VM usando a imagem mais recente e não obsoleta da Rocky Linux 8 otimizada para a família de imagens do Google Cloud que usa o tipo de máquina
g2-standard-8
e tem uma estação de trabalho virtual NVIDIA RTX, conclua as etapas a seguir:Imagem de DLVM (A2)
Usar imagens de DLVM é a maneira mais fácil de começar, porque essas imagens já têm os drivers NVIDIA e bibliotecas CUDA pré-instaladas.
Essas imagens também fornecem otimizações de desempenho.
As seguintes imagens de DLVM são compatíveis com NVIDIA A100:
Para mais informações sobre as imagens de DLVM disponíveis e os pacotes instalados nas imagens, consulte a documentação sobre VMs de aprendizado profundo.
GPU com várias instâncias (somente VMs A3 e A2)
Uma GPU com várias instâncias particiona uma única GPU NVIDIA H100 ou A100 na mesma VM em até sete instâncias de GPU independentes. Elas são executadas simultaneamente, cada uma com a própria memória, o próprio cache e os próprios multiprocessadores de streaming. Essa configuração permite que a GPU NVIDIA H100 ou A100 ofereça qualidade de serviço (QoS) garantida com utilização até sete vezes maior em comparação com os modelos de GPU anteriores.
É possível criar até sete GPUs com várias instâncias. No caso das GPUs A100 de 40 GB, cada GPU com várias instâncias recebe 5 GB de memória. No caso das GPUs A100 e H100 de 80 GB, a memória alocada dobra para 10 GB cada.
Para mais informações sobre o uso de GPUs com várias instâncias, consulte o Guia do usuário de GPUs NVIDIA com várias instâncias.
Para criar GPUs com várias instâncias, siga estas etapas:
A seguir
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2024-12-22 UTC.
-