Storage Write API を使用したデータ読み込みのバッチ処理
このドキュメントでは、BigQuery Storage Write API を使用して、データを BigQuery にバッチ読み込みする方法について説明します。
バッチ読み込みのシナリオでは、アプリケーションがデータを書き込み、単一のアトミック トランザクションとして commit します。Storage Write API を使用してデータをバッチ読み込みする場合は、保留モードでストリームを 1 つ以上作成します。保留タイプでは、ストリームレベルのトランザクションがサポートされます。ストリームを commit するまで、レコードは保留状態になります。
バッチ ワークロードでは、カスタムの Storage Write API コードを記述するのではなく、Dataproc を使用して BigQuery 用 Apache Spark SQL コネクタを介して Storage Write API を使用することも検討してください。
Storage Write API は、データ パイプライン アーキテクチャに最適です。メインプロセスでは多数のストリームが作成されます。ストリームごとに、ワーカー スレッドまたは個別のプロセスを割り当てて、バッチデータの一部を書き込みます。各ワーカーはストリームへの接続を作成し、データを書き込み、書き込みが完了するとストリームを完了します。すべてのワーカーが、メインプロセスが正常に完了したことを通知すると、メインプロセスはデータを commit します。ワーカーで障害が発生した場合、そのデータの割り当て部分が最終結果に表示されず、ワーカー全体を安全に再試行できます。より高度なパイプラインでは、ワーカーはメインプロセスに書き込まれた最後のオフセットを報告することで、進行状況をチェックします。この方法では、障害に対する復元性を有する堅牢なパイプラインが発生する場合があります。
保留タイプを使用したデータのバッチ読み込み
保留タイプを使用するには、アプリケーションで次の処理を行います。
CreateWriteStream
を呼び出して、保留モードで 1 つ以上のストリームを作成します。- ストリームごとに、
AppendRows
をループで呼び出して、レコードのバッチを書き込みます。 - ストリームごとに
FinalizeWriteStream
を呼び出します。このメソッドを呼び出した後は、ストリームにこれ以上行を書き込むことはできません。FinalizeWriteStream
を呼び出した後にAppendRows
を呼び出すと、google.rpc.Status
エラーでStorageErrorCode.STREAM_FINALIZED
を含むStorageError
が返されます。google.rpc.Status
エラーモデルの詳細については、エラーをご覧ください。 BatchCommitWriteStreams
を呼び出してストリームを commit します。このメソッドを呼び出すと、データが読み取れるようになります。いずれかのストリームの commit 中にエラーが発生すると、BatchCommitWriteStreamsResponse
のstream_errors
フィールドにエラーが返されます。
commit はアトミック オペレーションであり、複数のストリームを一度に commit できます。ストリームは 1 回だけ commit できます。そのため、commit オペレーションが失敗した場合は、安全に再試行できます。ストリームが commit されるまで、データは保留中であり、読み取りはできません。
ストリームが完了してから commit されるまで、データは最大 4 時間バッファに残ります。保留中のストリームは 24 時間以内に commit する必要があります。 保留中のストリーム バッファの合計サイズには、割り当て上限があります。
次のコードは、保留タイプのデータを書き込む方法を示しています。
C#
BigQuery 用のクライアント ライブラリをインストールして使用する方法については、BigQuery クライアント ライブラリをご覧ください。詳細については、BigQuery C# API のリファレンス ドキュメントをご覧ください。
BigQuery に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、クライアント ライブラリの認証情報を設定するをご覧ください。
using Google.Api.Gax.Grpc;
using Google.Cloud.BigQuery.Storage.V1;
using Google.Protobuf;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using static Google.Cloud.BigQuery.Storage.V1.AppendRowsRequest.Types;
public class AppendRowsPendingSample
{
/// <summary>
/// This code sample demonstrates how to write records in pending mode.
/// Create a write stream, write some sample data, and commit the stream to append the rows.
/// The CustomerRecord proto used in the sample can be seen in Resources folder and generated C# is placed in Data folder in
/// https://github.com/GoogleCloudPlatform/dotnet-docs-samples/tree/main/bigquery-storage/api/BigQueryStorage.Samples
/// </summary>
public async Task AppendRowsPendingAsync(string projectId, string datasetId, string tableId)
{
BigQueryWriteClient bigQueryWriteClient = await BigQueryWriteClient.CreateAsync();
// Initialize a write stream for the specified table.
// When creating the stream, choose the type. Use the Pending type to wait
// until the stream is committed before it is visible. See:
// https://cloud.google.com/bigquery/docs/reference/storage/rpc/google.cloud.bigquery.storage.v1#google.cloud.bigquery.storage.v1.WriteStream.Type
WriteStream stream = new WriteStream { Type = WriteStream.Types.Type.Pending };
TableName tableName = TableName.FromProjectDatasetTable(projectId, datasetId, tableId);
stream = await bigQueryWriteClient.CreateWriteStreamAsync(tableName, stream);
// Initialize streaming call, retrieving the stream object
BigQueryWriteClient.AppendRowsStream rowAppender = bigQueryWriteClient.AppendRows();
// Sending requests and retrieving responses can be arbitrarily interleaved.
// Exact sequence will depend on client/server behavior.
// Create task to do something with responses from server.
Task appendResultsHandlerTask = Task.Run(async () =>
{
AsyncResponseStream<AppendRowsResponse> appendRowResults = rowAppender.GetResponseStream();
while (await appendRowResults.MoveNextAsync())
{
AppendRowsResponse responseItem = appendRowResults.Current;
// Do something with responses.
Console.WriteLine($"Appending rows resulted in: {responseItem.AppendResult}");
}
// The response stream has completed.
});
// List of records to be appended in the table.
List<CustomerRecord> records = new List<CustomerRecord>
{
new CustomerRecord { CustomerNumber = 1, CustomerName = "Alice" },
new CustomerRecord { CustomerNumber = 2, CustomerName = "Bob" }
};
// Create a batch of row data by appending serialized bytes to the
// SerializedRows repeated field.
ProtoData protoData = new ProtoData
{
WriterSchema = new ProtoSchema { ProtoDescriptor = CustomerRecord.Descriptor.ToProto() },
Rows = new ProtoRows { SerializedRows = { records.Select(r => r.ToByteString()) } }
};
// Initialize the append row request.
AppendRowsRequest appendRowRequest = new AppendRowsRequest
{
WriteStreamAsWriteStreamName = stream.WriteStreamName,
ProtoRows = protoData
};
// Stream a request to the server.
await rowAppender.WriteAsync(appendRowRequest);
// Append a second batch of data.
protoData = new ProtoData
{
Rows = new ProtoRows { SerializedRows = { new CustomerRecord { CustomerNumber = 3, CustomerName = "Charles" }.ToByteString() } }
};
// Since this is the second request, you only need to include the row data.
// The name of the stream and protocol buffers descriptor is only needed in
// the first request.
appendRowRequest = new AppendRowsRequest
{
// If Offset is not present, the write is performed at the current end of stream.
ProtoRows = protoData
};
await rowAppender.WriteAsync(appendRowRequest);
// Complete writing requests to the stream.
await rowAppender.WriteCompleteAsync();
// Await the handler. This will complete once all server responses have been processed.
await appendResultsHandlerTask;
// A Pending type stream must be "finalized" before being committed. No new
// records can be written to the stream after this method has been called.
await bigQueryWriteClient.FinalizeWriteStreamAsync(stream.Name);
BatchCommitWriteStreamsRequest batchCommitWriteStreamsRequest = new BatchCommitWriteStreamsRequest
{
Parent = tableName.ToString(),
WriteStreams = { stream.Name }
};
BatchCommitWriteStreamsResponse batchCommitWriteStreamsResponse =
await bigQueryWriteClient.BatchCommitWriteStreamsAsync(batchCommitWriteStreamsRequest);
if (batchCommitWriteStreamsResponse.StreamErrors?.Count > 0)
{
// Handle errors here.
Console.WriteLine("Error committing write streams. Individual errors:");
foreach (StorageError error in batchCommitWriteStreamsResponse.StreamErrors)
{
Console.WriteLine(error.ErrorMessage);
}
}
else
{
Console.WriteLine($"Writes to stream {stream.Name} have been committed.");
}
}
}
Go
BigQuery 用のクライアント ライブラリをインストールして使用する方法については、BigQuery クライアント ライブラリをご覧ください。詳細については、BigQuery Go API のリファレンス ドキュメントをご覧ください。
BigQuery に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、クライアント ライブラリの認証情報を設定するをご覧ください。
import (
"context"
"fmt"
"io"
"math/rand"
"time"
"cloud.google.com/go/bigquery/storage/apiv1/storagepb"
"cloud.google.com/go/bigquery/storage/managedwriter"
"cloud.google.com/go/bigquery/storage/managedwriter/adapt"
"github.com/GoogleCloudPlatform/golang-samples/bigquery/snippets/managedwriter/exampleproto"
"google.golang.org/protobuf/proto"
)
// generateExampleMessages generates a slice of serialized protobuf messages using a statically defined
// and compiled protocol buffer file, and returns the binary serialized representation.
func generateExampleMessages(numMessages int) ([][]byte, error) {
msgs := make([][]byte, numMessages)
for i := 0; i < numMessages; i++ {
random := rand.New(rand.NewSource(time.Now().UnixNano()))
// Our example data embeds an array of structs, so we'll construct that first.
sList := make([]*exampleproto.SampleStruct, 5)
for i := 0; i < int(random.Int63n(5)+1); i++ {
sList[i] = &exampleproto.SampleStruct{
SubIntCol: proto.Int64(random.Int63()),
}
}
m := &exampleproto.SampleData{
BoolCol: proto.Bool(true),
BytesCol: []byte("some bytes"),
Float64Col: proto.Float64(3.14),
Int64Col: proto.Int64(123),
StringCol: proto.String("example string value"),
// These types require special encoding/formatting to transmit.
// DATE values are number of days since the Unix epoch.
DateCol: proto.Int32(int32(time.Now().UnixNano() / 86400000000000)),
// DATETIME uses the literal format.
DatetimeCol: proto.String("2022-01-01 12:13:14.000000"),
// GEOGRAPHY uses Well-Known-Text (WKT) format.
GeographyCol: proto.String("POINT(-122.350220 47.649154)"),
// NUMERIC and BIGNUMERIC can be passed as string, or more efficiently
// using a packed byte representation.
NumericCol: proto.String("99999999999999999999999999999.999999999"),
BignumericCol: proto.String("578960446186580977117854925043439539266.34992332820282019728792003956564819967"),
// TIME also uses literal format.
TimeCol: proto.String("12:13:14.000000"),
// TIMESTAMP uses microseconds since Unix epoch.
TimestampCol: proto.Int64(time.Now().UnixNano() / 1000),
// Int64List is an array of INT64 types.
Int64List: []int64{2, 4, 6, 8},
// This is a required field, and thus must be present.
RowNum: proto.Int64(23),
// StructCol is a single nested message.
StructCol: &exampleproto.SampleStruct{
SubIntCol: proto.Int64(random.Int63()),
},
// StructList is a repeated array of a nested message.
StructList: sList,
}
b, err := proto.Marshal(m)
if err != nil {
return nil, fmt.Errorf("error generating message %d: %w", i, err)
}
msgs[i] = b
}
return msgs, nil
}
// appendToPendingStream demonstrates using the managedwriter package to write some example data
// to a pending stream, and then committing it to a table.
func appendToPendingStream(w io.Writer, projectID, datasetID, tableID string) error {
// projectID := "myproject"
// datasetID := "mydataset"
// tableID := "mytable"
ctx := context.Background()
// Instantiate a managedwriter client to handle interactions with the service.
client, err := managedwriter.NewClient(ctx, projectID)
if err != nil {
return fmt.Errorf("managedwriter.NewClient: %w", err)
}
// Close the client when we exit the function.
defer client.Close()
// Create a new pending stream. We'll use the stream name to construct a writer.
pendingStream, err := client.CreateWriteStream(ctx, &storagepb.CreateWriteStreamRequest{
Parent: fmt.Sprintf("projects/%s/datasets/%s/tables/%s", projectID, datasetID, tableID),
WriteStream: &storagepb.WriteStream{
Type: storagepb.WriteStream_PENDING,
},
})
if err != nil {
return fmt.Errorf("CreateWriteStream: %w", err)
}
// We need to communicate the descriptor of the protocol buffer message we're using, which
// is analagous to the "schema" for the message. Both SampleData and SampleStruct are
// two distinct messages in the compiled proto file, so we'll use adapt.NormalizeDescriptor
// to unify them into a single self-contained descriptor representation.
m := &exampleproto.SampleData{}
descriptorProto, err := adapt.NormalizeDescriptor(m.ProtoReflect().Descriptor())
if err != nil {
return fmt.Errorf("NormalizeDescriptor: %w", err)
}
// Instantiate a ManagedStream, which manages low level details like connection state and provides
// additional features like a future-like callback for appends, etc. NewManagedStream can also create
// the stream on your behalf, but in this example we're being explicit about stream creation.
managedStream, err := client.NewManagedStream(ctx, managedwriter.WithStreamName(pendingStream.GetName()),
managedwriter.WithSchemaDescriptor(descriptorProto))
if err != nil {
return fmt.Errorf("NewManagedStream: %w", err)
}
defer managedStream.Close()
// First, we'll append a single row.
rows, err := generateExampleMessages(1)
if err != nil {
return fmt.Errorf("generateExampleMessages: %w", err)
}
// We'll keep track of the current offset in the stream with curOffset.
var curOffset int64
// We can append data asyncronously, so we'll check our appends at the end.
var results []*managedwriter.AppendResult
result, err := managedStream.AppendRows(ctx, rows, managedwriter.WithOffset(0))
if err != nil {
return fmt.Errorf("AppendRows first call error: %w", err)
}
results = append(results, result)
// Advance our current offset.
curOffset = curOffset + 1
// This time, we'll append three more rows in a single request.
rows, err = generateExampleMessages(3)
if err != nil {
return fmt.Errorf("generateExampleMessages: %w", err)
}
result, err = managedStream.AppendRows(ctx, rows, managedwriter.WithOffset(curOffset))
if err != nil {
return fmt.Errorf("AppendRows second call error: %w", err)
}
results = append(results, result)
// Advance our offset again.
curOffset = curOffset + 3
// Finally, we'll append two more rows.
rows, err = generateExampleMessages(2)
if err != nil {
return fmt.Errorf("generateExampleMessages: %w", err)
}
result, err = managedStream.AppendRows(ctx, rows, managedwriter.WithOffset(curOffset))
if err != nil {
return fmt.Errorf("AppendRows third call error: %w", err)
}
results = append(results, result)
// Now, we'll check that our batch of three appends all completed successfully.
// Monitoring the results could also be done out of band via a goroutine.
for k, v := range results {
// GetResult blocks until we receive a response from the API.
recvOffset, err := v.GetResult(ctx)
if err != nil {
return fmt.Errorf("append %d returned error: %w", k, err)
}
fmt.Fprintf(w, "Successfully appended data at offset %d.\n", recvOffset)
}
// We're now done appending to this stream. We now mark pending stream finalized, which blocks
// further appends.
rowCount, err := managedStream.Finalize(ctx)
if err != nil {
return fmt.Errorf("error during Finalize: %w", err)
}
fmt.Fprintf(w, "Stream %s finalized with %d rows.\n", managedStream.StreamName(), rowCount)
// To commit the data to the table, we need to run a batch commit. You can commit several streams
// atomically as a group, but in this instance we'll only commit the single stream.
req := &storagepb.BatchCommitWriteStreamsRequest{
Parent: managedwriter.TableParentFromStreamName(managedStream.StreamName()),
WriteStreams: []string{managedStream.StreamName()},
}
resp, err := client.BatchCommitWriteStreams(ctx, req)
if err != nil {
return fmt.Errorf("client.BatchCommit: %w", err)
}
if len(resp.GetStreamErrors()) > 0 {
return fmt.Errorf("stream errors present: %v", resp.GetStreamErrors())
}
fmt.Fprintf(w, "Table data committed at %s\n", resp.GetCommitTime().AsTime().Format(time.RFC3339Nano))
return nil
}
Java
BigQuery 用のクライアント ライブラリをインストールして使用する方法については、BigQuery クライアント ライブラリをご覧ください。詳細については、BigQuery Java API のリファレンス ドキュメントをご覧ください。
BigQuery に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、クライアント ライブラリの認証情報を設定するをご覧ください。
import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutureCallback;
import com.google.api.core.ApiFutures;
import com.google.api.gax.retrying.RetrySettings;
import com.google.cloud.bigquery.storage.v1.AppendRowsResponse;
import com.google.cloud.bigquery.storage.v1.BatchCommitWriteStreamsRequest;
import com.google.cloud.bigquery.storage.v1.BatchCommitWriteStreamsResponse;
import com.google.cloud.bigquery.storage.v1.BigQueryWriteClient;
import com.google.cloud.bigquery.storage.v1.CreateWriteStreamRequest;
import com.google.cloud.bigquery.storage.v1.Exceptions;
import com.google.cloud.bigquery.storage.v1.Exceptions.StorageException;
import com.google.cloud.bigquery.storage.v1.FinalizeWriteStreamResponse;
import com.google.cloud.bigquery.storage.v1.JsonStreamWriter;
import com.google.cloud.bigquery.storage.v1.StorageError;
import com.google.cloud.bigquery.storage.v1.TableName;
import com.google.cloud.bigquery.storage.v1.WriteStream;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.protobuf.Descriptors.DescriptorValidationException;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Phaser;
import javax.annotation.concurrent.GuardedBy;
import org.json.JSONArray;
import org.json.JSONObject;
import org.threeten.bp.Duration;
public class WritePendingStream {
public static void runWritePendingStream()
throws DescriptorValidationException, InterruptedException, IOException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "MY_PROJECT_ID";
String datasetName = "MY_DATASET_NAME";
String tableName = "MY_TABLE_NAME";
writePendingStream(projectId, datasetName, tableName);
}
public static void writePendingStream(String projectId, String datasetName, String tableName)
throws DescriptorValidationException, InterruptedException, IOException {
BigQueryWriteClient client = BigQueryWriteClient.create();
TableName parentTable = TableName.of(projectId, datasetName, tableName);
DataWriter writer = new DataWriter();
// One time initialization.
writer.initialize(parentTable, client);
try {
// Write two batches of fake data to the stream, each with 10 JSON records. Data may be
// batched up to the maximum request size:
// https://cloud.google.com/bigquery/quotas#write-api-limits
long offset = 0;
for (int i = 0; i < 2; i++) {
// Create a JSON object that is compatible with the table schema.
JSONArray jsonArr = new JSONArray();
for (int j = 0; j < 10; j++) {
JSONObject record = new JSONObject();
record.put("col1", String.format("batch-record %03d-%03d", i, j));
jsonArr.put(record);
}
writer.append(jsonArr, offset);
offset += jsonArr.length();
}
} catch (ExecutionException e) {
// If the wrapped exception is a StatusRuntimeException, check the state of the operation.
// If the state is INTERNAL, CANCELLED, or ABORTED, you can retry. For more information, see:
// https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html
System.out.println("Failed to append records. \n" + e);
}
// Final cleanup for the stream.
writer.cleanup(client);
System.out.println("Appended records successfully.");
// Once all streams are done, if all writes were successful, commit all of them in one request.
// This example only has the one stream. If any streams failed, their workload may be
// retried on a new stream, and then only the successful stream should be included in the
// commit.
BatchCommitWriteStreamsRequest commitRequest =
BatchCommitWriteStreamsRequest.newBuilder()
.setParent(parentTable.toString())
.addWriteStreams(writer.getStreamName())
.build();
BatchCommitWriteStreamsResponse commitResponse = client.batchCommitWriteStreams(commitRequest);
// If the response does not have a commit time, it means the commit operation failed.
if (commitResponse.hasCommitTime() == false) {
for (StorageError err : commitResponse.getStreamErrorsList()) {
System.out.println(err.getErrorMessage());
}
throw new RuntimeException("Error committing the streams");
}
System.out.println("Appended and committed records successfully.");
}
// A simple wrapper object showing how the stateful stream writer should be used.
private static class DataWriter {
private JsonStreamWriter streamWriter;
// Track the number of in-flight requests to wait for all responses before shutting down.
private final Phaser inflightRequestCount = new Phaser(1);
private final Object lock = new Object();
@GuardedBy("lock")
private RuntimeException error = null;
void initialize(TableName parentTable, BigQueryWriteClient client)
throws IOException, DescriptorValidationException, InterruptedException {
// Initialize a write stream for the specified table.
// For more information on WriteStream.Type, see:
// https://googleapis.dev/java/google-cloud-bigquerystorage/latest/com/google/cloud/bigquery/storage/v1/WriteStream.Type.html
WriteStream stream = WriteStream.newBuilder().setType(WriteStream.Type.PENDING).build();
// Configure in-stream automatic retry settings.
// Error codes that are immediately retried:
// * ABORTED, UNAVAILABLE, CANCELLED, INTERNAL, DEADLINE_EXCEEDED
// Error codes that are retried with exponential backoff:
// * RESOURCE_EXHAUSTED
RetrySettings retrySettings =
RetrySettings.newBuilder()
.setInitialRetryDelay(Duration.ofMillis(500))
.setRetryDelayMultiplier(1.1)
.setMaxAttempts(5)
.setMaxRetryDelay(Duration.ofMinutes(1))
.build();
CreateWriteStreamRequest createWriteStreamRequest =
CreateWriteStreamRequest.newBuilder()
.setParent(parentTable.toString())
.setWriteStream(stream)
.build();
WriteStream writeStream = client.createWriteStream(createWriteStreamRequest);
// Use the JSON stream writer to send records in JSON format.
// For more information about JsonStreamWriter, see:
// https://cloud.google.com/java/docs/reference/google-cloud-bigquerystorage/latest/com.google.cloud.bigquery.storage.v1.JsonStreamWriter
streamWriter =
JsonStreamWriter.newBuilder(writeStream.getName(), writeStream.getTableSchema())
.setRetrySettings(retrySettings)
.build();
}
public void append(JSONArray data, long offset)
throws DescriptorValidationException, IOException, ExecutionException {
synchronized (this.lock) {
// If earlier appends have failed, we need to reset before continuing.
if (this.error != null) {
throw this.error;
}
}
// Append asynchronously for increased throughput.
ApiFuture<AppendRowsResponse> future = streamWriter.append(data, offset);
ApiFutures.addCallback(
future, new AppendCompleteCallback(this), MoreExecutors.directExecutor());
// Increase the count of in-flight requests.
inflightRequestCount.register();
}
public void cleanup(BigQueryWriteClient client) {
// Wait for all in-flight requests to complete.
inflightRequestCount.arriveAndAwaitAdvance();
// Close the connection to the server.
streamWriter.close();
// Verify that no error occurred in the stream.
synchronized (this.lock) {
if (this.error != null) {
throw this.error;
}
}
// Finalize the stream.
FinalizeWriteStreamResponse finalizeResponse =
client.finalizeWriteStream(streamWriter.getStreamName());
System.out.println("Rows written: " + finalizeResponse.getRowCount());
}
public String getStreamName() {
return streamWriter.getStreamName();
}
static class AppendCompleteCallback implements ApiFutureCallback<AppendRowsResponse> {
private final DataWriter parent;
public AppendCompleteCallback(DataWriter parent) {
this.parent = parent;
}
public void onSuccess(AppendRowsResponse response) {
System.out.format("Append %d success\n", response.getAppendResult().getOffset().getValue());
done();
}
public void onFailure(Throwable throwable) {
synchronized (this.parent.lock) {
if (this.parent.error == null) {
StorageException storageException = Exceptions.toStorageException(throwable);
this.parent.error =
(storageException != null) ? storageException : new RuntimeException(throwable);
}
}
System.out.format("Error: %s\n", throwable.toString());
done();
}
private void done() {
// Reduce the count of in-flight requests.
this.parent.inflightRequestCount.arriveAndDeregister();
}
}
}
}
Node.js
BigQuery 用のクライアント ライブラリをインストールして使用する方法については、BigQuery クライアント ライブラリをご覧ください。詳細については、BigQuery Node.js API のリファレンス ドキュメントをご覧ください。
BigQuery に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、クライアント ライブラリの認証情報を設定するをご覧ください。
const {adapt, managedwriter} = require('@google-cloud/bigquery-storage');
const {WriterClient, Writer} = managedwriter;
const customer_record_pb = require('./customer_record_pb.js');
const {CustomerRecord} = customer_record_pb;
const protobufjs = require('protobufjs');
require('protobufjs/ext/descriptor');
async function appendRowsPending() {
/**
* If you make updates to the customer_record.proto protocol buffers definition,
* run:
* pbjs customer_record.proto -t static-module -w commonjs -o customer_record.js
* pbjs customer_record.proto -t json --keep-case -o customer_record.json
* from the /samples directory to generate the customer_record module.
*/
// So that BigQuery knows how to parse the serialized_rows, create a
// protocol buffer representation of your message descriptor.
const root = protobufjs.loadSync('./customer_record.json');
const descriptor = root.lookupType('CustomerRecord').toDescriptor('proto2');
const protoDescriptor = adapt.normalizeDescriptor(descriptor).toJSON();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// projectId = 'my_project';
// datasetId = 'my_dataset';
// tableId = 'my_table';
const destinationTable = `projects/${projectId}/datasets/${datasetId}/tables/${tableId}`;
const streamType = managedwriter.PendingStream;
const writeClient = new WriterClient({projectId});
try {
const writeStream = await writeClient.createWriteStreamFullResponse({
streamType,
destinationTable,
});
const streamId = writeStream.name;
console.log(`Stream created: ${streamId}`);
const connection = await writeClient.createStreamConnection({
streamId,
});
const writer = new Writer({
connection,
protoDescriptor,
});
let serializedRows = [];
const pendingWrites = [];
// Row 1
let row = {
rowNum: 1,
customerName: 'Octavia',
};
serializedRows.push(CustomerRecord.encode(row).finish());
// Row 2
row = {
rowNum: 2,
customerName: 'Turing',
};
serializedRows.push(CustomerRecord.encode(row).finish());
// Set an offset to allow resuming this stream if the connection breaks.
// Keep track of which requests the server has acknowledged and resume the
// stream at the first non-acknowledged message. If the server has already
// processed a message with that offset, it will return an ALREADY_EXISTS
// error, which can be safely ignored.
// The first request must always have an offset of 0.
let offsetValue = 0;
// Send batch.
let pw = writer.appendRows({serializedRows}, offsetValue);
pendingWrites.push(pw);
serializedRows = [];
// Row 3
row = {
rowNum: 3,
customerName: 'Bell',
};
serializedRows.push(CustomerRecord.encode(row).finish());
// Offset must equal the number of rows that were previously sent.
offsetValue = 2;
// Send batch.
pw = writer.appendRows({serializedRows}, offsetValue);
pendingWrites.push(pw);
const results = await Promise.all(
pendingWrites.map(pw => pw.getResult())
);
console.log('Write results:', results);
const {rowCount} = await connection.finalize();
console.log(`Row count: ${rowCount}`);
const response = await writeClient.batchCommitWriteStream({
parent: destinationTable,
writeStreams: [streamId],
});
console.log(response);
} catch (err) {
console.log(err);
} finally {
writeClient.close();
}
}
Python
次の例は、2 つのフィールドを持つ単純なレコードを示しています。STRUCT
型など、さまざまなデータ型を送信する方法を示す詳しい例については、GitHub の append_rows_proto2 サンプルをご覧ください。
BigQuery 用のクライアント ライブラリをインストールして使用する方法については、BigQuery クライアント ライブラリをご覧ください。詳細については、BigQuery Python API のリファレンス ドキュメントをご覧ください。
BigQuery に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、クライアント ライブラリの認証情報を設定するをご覧ください。
"""
This code sample demonstrates how to write records in pending mode
using the low-level generated client for Python.
"""
from google.protobuf import descriptor_pb2
from google.cloud import bigquery_storage_v1
from google.cloud.bigquery_storage_v1 import types, writer
# If you update the customer_record.proto protocol buffer definition, run:
#
# protoc --python_out=. customer_record.proto
#
# from the samples/snippets directory to generate the customer_record_pb2.py module.
from . import customer_record_pb2
def create_row_data(row_num: int, name: str):
row = customer_record_pb2.CustomerRecord()
row.row_num = row_num
row.customer_name = name
return row.SerializeToString()
def append_rows_pending(project_id: str, dataset_id: str, table_id: str):
"""Create a write stream, write some sample data, and commit the stream."""
write_client = bigquery_storage_v1.BigQueryWriteClient()
parent = write_client.table_path(project_id, dataset_id, table_id)
write_stream = types.WriteStream()
# When creating the stream, choose the type. Use the PENDING type to wait
# until the stream is committed before it is visible. See:
# https://cloud.google.com/bigquery/docs/reference/storage/rpc/google.cloud.bigquery.storage.v1#google.cloud.bigquery.storage.v1.WriteStream.Type
write_stream.type_ = types.WriteStream.Type.PENDING
write_stream = write_client.create_write_stream(
parent=parent, write_stream=write_stream
)
stream_name = write_stream.name
# Create a template with fields needed for the first request.
request_template = types.AppendRowsRequest()
# The initial request must contain the stream name.
request_template.write_stream = stream_name
# So that BigQuery knows how to parse the serialized_rows, generate a
# protocol buffer representation of your message descriptor.
proto_schema = types.ProtoSchema()
proto_descriptor = descriptor_pb2.DescriptorProto()
customer_record_pb2.CustomerRecord.DESCRIPTOR.CopyToProto(proto_descriptor)
proto_schema.proto_descriptor = proto_descriptor
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.writer_schema = proto_schema
request_template.proto_rows = proto_data
# Some stream types support an unbounded number of requests. Construct an
# AppendRowsStream to send an arbitrary number of requests to a stream.
append_rows_stream = writer.AppendRowsStream(write_client, request_template)
# Create a batch of row data by appending proto2 serialized bytes to the
# serialized_rows repeated field.
proto_rows = types.ProtoRows()
proto_rows.serialized_rows.append(create_row_data(1, "Alice"))
proto_rows.serialized_rows.append(create_row_data(2, "Bob"))
# Set an offset to allow resuming this stream if the connection breaks.
# Keep track of which requests the server has acknowledged and resume the
# stream at the first non-acknowledged message. If the server has already
# processed a message with that offset, it will return an ALREADY_EXISTS
# error, which can be safely ignored.
#
# The first request must always have an offset of 0.
request = types.AppendRowsRequest()
request.offset = 0
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.rows = proto_rows
request.proto_rows = proto_data
response_future_1 = append_rows_stream.send(request)
# Send another batch.
proto_rows = types.ProtoRows()
proto_rows.serialized_rows.append(create_row_data(3, "Charles"))
# Since this is the second request, you only need to include the row data.
# The name of the stream and protocol buffers DESCRIPTOR is only needed in
# the first request.
request = types.AppendRowsRequest()
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.rows = proto_rows
request.proto_rows = proto_data
# Offset must equal the number of rows that were previously sent.
request.offset = 2
response_future_2 = append_rows_stream.send(request)
print(response_future_1.result())
print(response_future_2.result())
# Shutdown background threads and close the streaming connection.
append_rows_stream.close()
# A PENDING type stream must be "finalized" before being committed. No new
# records can be written to the stream after this method has been called.
write_client.finalize_write_stream(name=write_stream.name)
# Commit the stream you created earlier.
batch_commit_write_streams_request = types.BatchCommitWriteStreamsRequest()
batch_commit_write_streams_request.parent = parent
batch_commit_write_streams_request.write_streams = [write_stream.name]
write_client.batch_commit_write_streams(batch_commit_write_streams_request)
print(f"Writes to stream: '{write_stream.name}' have been committed.")
このサンプルコードは、コンパイルされたプロトコル モジュール customer_record_pb2.py
に依存しています。コンパイルされたモジュールを作成するには、protoc --python_out=. customer_record.proto
を実行します。ここで、protoc
はプロトコル バッファ コンパイラです。customer_record.proto
ファイルは、Python の例で使用されるメッセージの形式を定義します。
// The BigQuery Storage API expects protocol buffer data to be encoded in the
// proto2 wire format. This allows it to disambiguate missing optional fields
// from default values without the need for wrapper types.
syntax = "proto2";
// Define a message type representing the rows in your table. The message
// cannot contain fields which are not present in the table.
message CustomerRecord {
optional string customer_name = 1;
// Use the required keyword for client-side validation of required fields.
required int64 row_num = 2;
}