Realiza una búsqueda semántica y una generación de aumento de recuperación

En este instructivo, se explica el proceso completo para crear y usar incorporaciones de texto, lo que incluye usar índices vectoriales para mejorar el rendimiento de la búsqueda.

En este instructivo, se abarcan las siguientes tareas:

  • Crea un modelo remoto de BigQuery ML en un modelo de incorporación de Vertex AI.
  • Usar el modelo remoto con la función ML.GENERATE_EMBEDDING para generar incorporaciones a partir de texto en una tabla de BigQuery
  • Crear un índice vectorial para indexar las incorporaciones.
  • Usar la función VECTOR_SEARCH con las incorporaciones para buscar texto similar
  • Realizar la generación de aumento de recuperación (RAG) a través de la generación de texto con la función ML.GENERATE_TEXT y el uso de los resultados de la búsqueda vectorial para aumentar la entrada de instrucciones y mejorar los resultados.

En este instructivo, se usa la tabla pública de BigQuery patents-public-data.google_patents_research.publications.

Roles y permisos requeridos

  • Para crear una conexión, necesitas membresía en el siguiente rol de Identity and Access Management (IAM):

    • roles/bigquery.connectionAdmin
  • Para otorgar permisos a la cuenta de servicio de la conexión, necesitas el siguiente permiso:

    • resourcemanager.projects.setIamPolicy
  • En este instructivo, los permisos de IAM necesarios para las operaciones de BigQuery restantes se incluyen en los siguientes dos roles:

    • Editor de datos de BigQuery (roles/bigquery.dataEditor) para crear modelos, índices y tablas
    • Usuario de BigQuery (roles/bigquery.user) para ejecutar trabajos de BigQuery.

Costos

En este documento, usarás los siguientes componentes facturables de Google Cloud:

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

Para generar una estimación de costos en función del uso previsto, usa la calculadora de precios. Es posible que los usuarios nuevos de Google Cloud califiquen para obtener una prueba gratuita.

Para obtener más información sobre los precios de BigQuery, consulta Precios de BigQuery en la documentación de BigQuery.

Para obtener más información sobre los precios de Vertex AI, consulta la página Precios de Vertex AI.

Antes de comenzar

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Crea un conjunto de datos

Crea un conjunto de datos de BigQuery para almacenar tu modelo de AA:

  1. En la consola de Google Cloud, ve a la página de BigQuery.

    Ir a la página de BigQuery

  2. En el panel Explorador, haz clic en el nombre de tu proyecto.

  3. Haz clic en Ver acciones > Crear conjunto de datos.

    Crea un conjunto de datos.

  4. En la página Crear conjunto de datos, haz lo siguiente:

    • En ID del conjunto de datos, ingresa bqml_tutorial.

    • En Tipo de ubicación, selecciona Multirregión y, luego, EE.UU. (varias regiones en Estados Unidos).

      Los conjuntos de datos públicos se almacenan en la multirregión US. Para que sea más simple, almacena tu conjunto de datos en la misma ubicación.

    • Deja la configuración predeterminada restante como está y haz clic en Crear conjunto de datos.

      Página Crear un conjunto de datos

Crear una conexión

Crea una conexión de recurso de Cloud y obtén la cuenta de servicio de la conexión. Crea la conexión en la misma ubicación que el conjunto de datos que creaste en el paso anterior.

Selecciona una de las opciones siguientes:

Console

  1. Ve a la página de BigQuery.

    Ir a BigQuery

  2. Para crear una conexión, haz clic en Agregar y, luego, en Conexiones a fuentes de datos externas.

  3. En la lista Tipo de conexión, selecciona Modelos remotos de Vertex AI, funciones remotas y BigLake (Cloud Resource).

  4. En el campo ID de conexión, escribe un nombre para tu conexión.

  5. Haz clic en Crear conexión (Create connection).

  6. Haz clic en Ir a la conexión.

  7. En el panel Información de conexión, copia el ID de la cuenta de servicio para usarlo en un paso posterior.

bq

  1. En un entorno de línea de comandos, crea una conexión:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    El parámetro --project_id anula el proyecto predeterminado.

    Reemplaza lo siguiente:

    • REGION: tu región de conexión
    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • CONNECTION_ID: Es un ID para tu conexión.

    Cuando creas un recurso de conexión, BigQuery crea una cuenta de servicio del sistema única y la asocia con la conexión.

    Solución de problemas: Si recibes el siguiente error de conexión, actualiza el SDK de Google Cloud:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera y copia el ID de cuenta de servicio para usarlo en un paso posterior:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    El resultado es similar a este:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Agrega la siguiente sección a tu archivo main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Reemplaza lo siguiente:

  • CONNECTION_ID: Es un ID para tu conexión.
  • PROJECT_ID: El ID del proyecto de Google Cloud.
  • REGION: tu región de conexión

Otorga acceso a la cuenta de servicio

Otorga a la cuenta de servicio de la conexión el rol de usuario de Vertex AI. Debes otorgar este rol en el mismo proyecto que creaste o seleccionaste en la sección Antes de comenzar. Si otorgas el rol en un proyecto diferente, se produce el error bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

Para otorgar el rol, sigue estos pasos:

  1. Ir a la página IAM y administración

    Ir a IAM y administración

  2. Haz clic en Otorgar acceso.

  3. En el campo Principales nuevas, escribe el ID de la cuenta de servicio que copiaste antes.

  4. En el campo Selecciona un rol, elige Vertex AI y, luego, selecciona Rol del usuario de Vertex AI.

  5. Haz clic en Guardar.

Crea el modelo remoto para la generación de incorporaciones de texto

Crea un modelo remoto que represente un modelo de generación de incorporación de texto de Vertex AI alojado:

  1. En la consola de Google Cloud, ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente declaración:

    CREATE OR REPLACE MODEL `bqml_tutorial.embedding_model`
      REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
      OPTIONS (ENDPOINT = 'text-embedding-004');

    Reemplaza lo siguiente:

    • LOCATION: la ubicación de la conexión
    • CONNECTION_ID por el ID de la conexión de BigQuery

      Cuando veas los detalles de conexión en la consola de Google Cloud, el CONNECTION_ID es el valor en la última sección del ID de conexión completamente calificado que se muestra en ID de conexión, por ejemplo projects/myproject/locations/connection_location/connections/myconnection

    La consulta tarda varios segundos en completarse, después de eso, el modelo embedding_model aparece en el conjunto de datos bqml_tutorial en el panel Explorador. Debido a que la consulta usa una declaración CREATE MODEL para crear un modelo, no hay resultados de consultas.

Generar incorporaciones de texto

Genera incorporaciones de texto a partir de resúmenes de patentes con la función ML.GENERATE_EMBEDDING y, luego, escríbelos en una tabla de BigQuery para que se puedan buscar.

  1. En la consola de Google Cloud, ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente declaración:

    CREATE OR REPLACE TABLE `bqml_tutorial.embeddings` AS
    SELECT * FROM ML.GENERATE_EMBEDDING(
      MODEL `bqml_tutorial.embedding_model`,
      (
        SELECT *, abstract AS content
        FROM `patents-public-data.google_patents_research.publications`
        WHERE LENGTH(abstract) > 0 AND LENGTH(title) > 0 AND country = 'Singapore'
      )
    )
    WHERE LENGTH(ml_generate_embedding_status) = 0;

La generación de embedding con la función ML.GENERATE_EMBEDDING puede fallar debido a cuotas de Vertex AI LLM o a la falta de disponibilidad del servicio. Los detalles del error se muestran en la columna ml_generate_embedding_status. Una columna ml_generate_embedding_status vacía indica que la generación de embeddings se realizó de forma correcta.

Para conocer métodos alternativos de generación de incorporaciones de texto en BigQuery, consulta el instructivo Incorpora texto con modelos de TensorFlow previamente entrenados.

Crea un índice vectorial

Para crear un índice vectorial, usa la declaración de lenguaje de definición de datos (DDL) CREATE VECTOR INDEX:

  1. Ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente instrucción de SQL:

    CREATE OR REPLACE VECTOR INDEX my_index
    ON `bqml_tutorial.embeddings`(ml_generate_embedding_result)
    OPTIONS(index_type = 'IVF',
      distance_type = 'COSINE',
      ivf_options = '{"num_lists":500}')

Verifica la creación de índices vectoriales

El índice vectorial se propaga de forma asíncrona. Para verificar si el índice está listo para usarse, consulta la vista INFORMATION_SCHEMA.VECTOR_INDEXES y verifica que el valor de la columna coverage_percentage sea mayor que 0 y que el valor de la columna last_refresh_time no sea NULL.

  1. Ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente instrucción de SQL:

    SELECT table_name, index_name, index_status,
    coverage_percentage, last_refresh_time, disable_reason
    FROM `PROJECT_ID.bqml_tutorial.INFORMATION_SCHEMA.VECTOR_INDEXES`

    Reemplaza PROJECT_ID con el ID del proyecto.

Realiza una búsqueda de similitud de texto con el índice vectorial

Usa la función VECTOR_SEARCH para buscar las 5 patentes relevantes principales que coincidan con las incorporaciones generadas a partir de una consulta de texto. El modelo que uses para generar las incorporaciones en esta consulta debe ser el mismo que usas para generar las incorporaciones en la tabla con la que comparas; de lo contrario, los resultados de la búsqueda no serán precisos.

  1. Ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente instrucción de SQL:

    SELECT query.query, base.publication_number, base.title, base.abstract
    FROM VECTOR_SEARCH(
      TABLE `bqml_tutorial.embeddings`, 'ml_generate_embedding_result',
      (
      SELECT ml_generate_embedding_result, content AS query
      FROM ML.GENERATE_EMBEDDING(
      MODEL `bqml_tutorial.embedding_model`,
      (SELECT 'improving password security' AS content))
      ),
      top_k => 5, options => '{"fraction_lists_to_search": 0.01}')

    El resultado es similar al siguiente:

    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    |            query            | publication_number |                       title                     |                      abstract                   |
    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    | improving password security | SG-120868-A1       | Data storage device security method and a...    | Methods for improving security in data stora... |
    | improving password security | SG-10201610585W-A  | Passsword management system and process...      | PASSSWORD MANAGEMENT SYSTEM AND PROCESS ...     |
    | improving password security | SG-148888-A1       | Improved system and method for...               | IMPROVED SYSTEM AND METHOD FOR RANDOM...        |
    | improving password security | SG-194267-A1       | Method and system for protecting a password...  | A system for providing security for a...        |
    | improving password security | SG-120868-A1       | Data storage device security...                 | Methods for improving security in data...       |
    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    

Crea el modelo remoto para la generación de texto

Crea un modelo remoto que represente un modelo de generación de texto de Vertex AI alojado:

  1. En la consola de Google Cloud, ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente declaración:

    CREATE OR REPLACE MODEL `bqml_tutorial.text_model`
      REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
      OPTIONS (ENDPOINT = 'text-bison-32k');

    Reemplaza lo siguiente:

    • LOCATION: la ubicación de la conexión
    • CONNECTION_ID por el ID de la conexión de BigQuery

      Cuando veas los detalles de conexión en la consola de Google Cloud, el CONNECTION_ID es el valor en la última sección del ID de conexión completamente calificado que se muestra en ID de conexión, por ejemplo projects/myproject/locations/connection_location/connections/myconnection

    La consulta tarda varios segundos en completarse, después de eso, el modelo text_model aparece en el conjunto de datos bqml_tutorial en el panel Explorador. Debido a que la consulta usa una declaración CREATE MODEL para crear un modelo, no hay resultados de consultas.

Genera texto aumentado por resultados de la búsqueda vectorial

Proporciona los resultados de la búsqueda como instrucciones para generar texto con la función ML.GENERATE_TEXT.

  1. En la consola de Google Cloud, ve a la página de BigQuery.

    Ir a BigQuery

  2. En el editor de consultas, ejecuta la siguiente declaración:

    SELECT ml_generate_text_llm_result AS generated, prompt
    FROM ML.GENERATE_TEXT(
      MODEL `bqml_tutorial.text_model`,
      (
        SELECT CONCAT(
          'Propose some project ideas to improve user password security using the context below: ',
          STRING_AGG(
            FORMAT("patent title: %s, patent abstract: %s", base.title, base.abstract),
            ',\n')
          ) AS prompt,
        FROM VECTOR_SEARCH(
          TABLE `bqml_tutorial.embeddings`, 'ml_generate_embedding_result',
          (
            SELECT ml_generate_embedding_result, content AS query
            FROM ML.GENERATE_EMBEDDING(
              MODEL `bqml_tutorial.embedding_model`,
             (SELECT 'improving password security' AS content)
            )
          ),
        top_k => 5, options => '{"fraction_lists_to_search": 0.01}')
      ),
      STRUCT(600 AS max_output_tokens, TRUE AS flatten_json_output));

    El resultado es similar al siguiente:

    +------------------------------------------------+------------------------------------------------------------+
    |            generated                           | prompt                                                     |
    +------------------------------------------------+------------------------------------------------------------+
    | **Project Ideas to Improve User Password       | Propose some project ideas to improve user password        |
    | Security**                                     | security using the context below: patent title: Active     |
    |                                                | new password entry dialog with compact visual indication   |
    | 1. **Develop a password manager that uses      | of adherence to password policy, patent abstract:          |
    | visual clues to indicate password strength.**  | An active new password entry dialog provides a compact     |
    | This could be done by using a color-coded...   | visual indication of adherence to password policies. A     |
    | 2. **Create a system that generates random     | visual indication of progress towards meeting all          |
    | passwords for users.** This would help to      | applicable password policies is included in the display    |
    | ensure that users are not using easily...      | and updated as new password characters are being...        |
    +------------------------------------------------+------------------------------------------------------------+
     

Limpia

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.