Prévoir plusieurs séries temporelles avec un modèle univarié TimesFM

Ce tutoriel vous explique comment utiliser la fonction AI.FORECAST avec le modèle univarié TimesFM intégré à BigQuery ML pour prévoir la valeur future d'une colonne donnée, en fonction de la valeur historique de cette colonne.

Ce tutoriel utilise les données de la table publique bigquery-public-data.san_francisco_bikeshare.bikeshare_trips.

Prévoir une seule série temporelle de trajets à vélo en libre-service

Prévoyez les valeurs futures des séries temporelles à l'aide de la fonction AI.FORECAST.

La requête suivante prévoit le nombre de trajets à vélo effectués par les abonnés par heure pour le mois prochain (environ 720 heures), en fonction des données historiques des quatre mois précédents. L'argument confidence_level indique que la requête génère un intervalle de prédiction avec un niveau de confiance de 95 %.

Pour prévoir des données avec le modèle TimesFM :

  1. Dans la console Google Cloud , accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter :

    SELECT *
    FROM
      AI.FORECAST(
        (
          SELECT TIMESTAMP_TRUNC(start_date, HOUR) as trip_hour, COUNT(*) as num_trips
    FROM `bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
    WHERE subscriber_type = 'Subscriber' AND start_date >= TIMESTAMP('2018-01-01')
    GROUP BY TIMESTAMP_TRUNC(start_date, HOUR)
        ),
        horizon => 720,
        confidence_level => 0.95,
        timestamp_col => 'trip_hour',
        data_col => 'num_trips');

    Les résultats ressemblent à ce qui suit :

    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | forecast_timestamp      | forecast_value    | confidence_level | prediction_interval_lower_bound | prediction_interval_upper_bound | ai_forecast_status |
    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | 2018-05-01 00:00:00 UTC | 26.3045959...     |            0.95  | 21.7088378...                   | 30.9003540...                   |                    |
    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | 2018-05-01 01:00:00 UTC | 34.0890502...     |            0.95  | 2.47682913...                   | 65.7012714...                   |                    |
    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | 2018-05-01 02:00:00 UTC | 24.2154693...     |            0.95  | 2.87621605...                   | 45.5547226...                   |                    |
    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | ...                     | ...               |  ...             | ...                             |  ...                            |                    |
    +-------------------------+-------------------+------------------+---------------------------------+---------------------------------+--------------------+
    

Comparer les données prévisionnelles aux données d'entrée

Représentez la sortie de la fonction AI.FORECAST à côté d'un sous-ensemble des données d'entrée de la fonction pour voir comment elles se comparent.

Pour représenter graphiquement la sortie de la fonction, procédez comme suit :

  1. Dans la console Google Cloud , accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter :

    WITH historical AS (
    SELECT TIMESTAMP_TRUNC(start_date, HOUR) as trip_hour, COUNT(*) as num_trips
    FROM `bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
    WHERE subscriber_type = 'Subscriber' AND start_date >= TIMESTAMP('2018-01-01')
    GROUP BY TIMESTAMP_TRUNC(start_date, HOUR)
    ORDER BY TIMESTAMP_TRUNC(start_date, HOUR)
    )
    SELECT * 
    FROM 
    (
    (SELECT
        trip_hour as date,
        num_trips AS historical_value,
        NULL as forecast_value,
        'historical' as type,
        NULL as prediction_interval_lower_bound,
        NULL as prediction_interval_upper_bound
    FROM
        historical
    ORDER BY historical.trip_hour DESC
    LIMIT 400)
    UNION ALL
    (SELECT forecast_timestamp AS date,
            NULL as historical_value,
            forecast_value as forecast_value,
            'forecast' as type,
            prediction_interval_lower_bound,
            prediction_interval_upper_bound
    FROM
        AI.FORECAST(
        (
        SELECT * FROM historical
        ),
        horizon => 720,
        confidence_level => 0.99,
        timestamp_col => 'trip_hour',
        data_col => 'num_trips')))
    ORDER BY date asc;
  3. Une fois la requête exécutée, cliquez sur l'onglet Visualisation dans le volet Résultats de la requête. Le graphique obtenu ressemble à ceci :

    Représentez graphiquement 100 points temporels de données d'entrée ainsi que les données de sortie de la fonction AI.FORECAST pour évaluer leur similitude.

    Vous pouvez constater que les données d'entrée et les données prévisionnelles montrent une utilisation similaire des vélos en libre-service. Vous pouvez également constater que les limites inférieure et supérieure de l'intervalle de prédiction augmentent à mesure que les points temporels prévus s'éloignent dans le futur.

Prévoir plusieurs séries temporelles de trajets en vélos en libre-service

La requête suivante prévoit le nombre de trajets à vélo en libre-service par type d'abonné et par heure pour le mois prochain (environ 720 heures), en fonction des données historiques des quatre mois précédents. L'argument confidence_level indique que la requête génère un intervalle de prédiction avec un niveau de confiance de 95 %.

Pour prévoir des données avec le modèle TimesFM :

  1. Dans la console Google Cloud , accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter :

    SELECT *
    FROM
      AI.FORECAST(
        (
          SELECT TIMESTAMP_TRUNC(start_date, HOUR) as trip_hour, subscriber_type, COUNT(*) as num_trips
          FROM `bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
          WHERE start_date >= TIMESTAMP('2018-01-01')
          GROUP BY TIMESTAMP_TRUNC(start_date, HOUR), subscriber_type
        ),
        horizon => 720,
        confidence_level => 0.95,
        timestamp_col => 'trip_hour',
        data_col => 'num_trips',
        id_cols => ['subscriber_type']);

    Les résultats ressemblent à ce qui suit :

    +---------------------+--------------------------+------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | subscriber_type     | forecast_timestamp       | forecast_value   | confidence_level | prediction_interval_lower_bound | prediction_interval_upper_bound | ai_forecast_status |
    +---------------------+--------------------------+------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | Subscriber          | 2018-05-01 00:00:00 UTC  | 26.3045959...    |            0.95  | 21.7088378...                   | 30.9003540...                   |                    |
    +---------------------+--------------------------+------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | Subscriber          |  2018-05-01 01:00:00 UTC | 34.0890502...    |            0.95  | 2.47682913...                   | 65.7012714...                   |                    |
    +---------------------+-------------------+------------------+-------------------------+---------------------------------+---------------------------------+--------------------+
    | Subscriber          |  2018-05-01 02:00:00 UTC | 24.2154693...    |            0.95  | 2.87621605...                   | 45.5547226...                   |                    |
    +---------------------+--------------------------+------------------+------------------+---------------------------------+---------------------------------+--------------------+
    | ...                 | ...                      |  ...             | ...              | ...                             |  ...                            |                    |
    +---------------------+--------------------------+------------------+------------------+---------------------------------+---------------------------------+--------------------+