Specifica di uno schema

BigQuery ti consente di specificare lo schema di una tabella quando carichi i dati in una tabella e quando crei una tabella vuota. In alternativa, puoi utilizzare il rilevamento automatico dello schema per i formati di dati supportati.

Quando carichi file di esportazione Avro, Parquet, ORC, Firestore o Datastore, lo schema viene recuperato automaticamente dai dati di origine autodescrittivi.

Puoi specificare lo schema di una tabella nei seguenti modi:

  • Utilizza la console Google Cloud.
  • Utilizza l'istruzione SQL CREATE TABLE.
  • In linea utilizzando lo strumento a riga di comando bq.
  • Crea un file dello schema in formato JSON.
  • Chiama il metodo jobs.insert e configura la proprietà schema nella configurazione del job load.
  • Chiama il metodo tables.insert e configura lo schema nella risorsa tabella utilizzando la proprietà schema.

Dopo aver caricato i dati o creato una tabella vuota, puoi modificare la definizione dello schema della tabella.

Componenti dello schema

Quando specifichi uno schema di tabella, devi fornire il nome e il tipo di dati di ogni colonna. Puoi anche fornire la descrizione, la modalità e il valore predefinito di una colonna.

Nomi delle colonne

Un nome di colonna può contenere lettere (a-z, A-Z), numeri (0-9) o trattini bassi (_) e deve iniziare con una lettera o un trattino basso. Se utilizzi nomi di colonne flessibili, BigQuery supporta l'inizio di un nome di colonna con un numero. Fai attenzione quando inizi le colonne con un numero, poiché l'utilizzo di nomi di colonne flessibili con l'API BigQuery Storage di lettura o con l'API BigQuery Storage Write richiede una gestione speciale. Per ulteriori informazioni sul supporto dei nomi delle colonne flessibili, consulta Nomi delle colonne flessibili.

I nomi delle colonne hanno una lunghezza massima di 300 caratteri. I nomi delle colonne non possono contenere nessuno dei seguenti prefissi:

  • _TABLE_
  • _FILE_
  • _PARTITION
  • _ROW_TIMESTAMP
  • __ROOT__
  • _COLIDENTIFIER

Non sono consentiti nomi di colonna duplicati, anche se le lettere maiuscole e minuscole sono diverse. Ad esempio, una colonna denominata Column1 è considerata identica a una colonna denominata column1. Per scoprire di più sulle regole di denominazione delle colonne, consulta Nomi colonna nella documentazione di riferimento di GoogleSQL.

Se il nome di una tabella (ad es. test) corrisponde a uno dei nomi delle sue colonne (ad es. test), l'espressione SELECT interpreta la colonna test come un STRUCT contenente tutte le altre colonne della tabella. Per evitare questa collisione, utilizza uno dei seguenti metodi:

  • Evita di utilizzare lo stesso nome per una tabella e le relative colonne.

  • Assegna alla tabella un alias diverso. Ad esempio, la seguente query assegna un alias tabella t alla tabella project1.dataset.test:

    SELECT test FROM project1.dataset.test AS t;
    
  • Includi il nome della tabella quando fai riferimento a una colonna. Ad esempio:

    SELECT test.test FROM project1.dataset.test;
    

Nomi di colonne flessibili

Hai una maggiore flessibilità nella scelta dei nomi delle colonne, incluso l'accesso ampliato ai caratteri in lingue diverse dall'inglese, nonché a simboli aggiuntivi.

I nomi delle colonne flessibili supportano i seguenti caratteri:

  • Qualsiasi lettera in qualsiasi lingua, come rappresentata dall'espressione regolare Unicode \p{L}.
  • Qualsiasi carattere numerico in qualsiasi lingua, come rappresentato dall'espressione regolare Unicode \p{N}.
  • Qualsiasi carattere di punteggiatura del connettore, inclusi gli underscore, come rappresentato dall'espressione regolare Unicode \p{Pc}.
  • Un trattino o un a capo come rappresentato dall'espressione regolare Unicode \p{Pd}.
  • Qualsiasi segno destinato ad accompagnare un altro carattere come rappresentato dall'espressione regolare Unicode \p{M}. Ad esempio, accenti, umlaut o riquadri di delimitazione.
  • I seguenti caratteri speciali:
    • Una e commerciale (&) rappresentata dall'espressione regolare Unicode \u0026.
    • Un segno di percentuale (%) come rappresentato dall'espressione regolare Unicode \u0025.
    • Un segno di uguale (=) rappresentato dall'espressione regolare Unicode \u003D.
    • Un segno più (+) rappresentato dall'espressione regolare Unicode \u002B.
    • Un due punti (:) come rappresentato dall'espressione regolare Unicode \u003A.
    • Un apostrofo (') come rappresentato dall'espressione regolare Unicode \u0027.
    • Un segno di minore (<) rappresentato dall'espressione regolare Unicode \u003C.
    • Un segno di maggiore (>) come rappresentato dall'espressione regolare Unicode \u003E.
    • Un segno di numero (#) come rappresentato dall'espressione regolare Unicode \u0023.
    • Una linea verticale (|) rappresentata dall'espressione regolare Unicode \u007c.
    • Spazi vuoti.

I nomi delle colonne flessibili non supportano i seguenti caratteri speciali:

  • Un punto esclamativo (!) rappresentato dall'espressione regolare Unicode \u0021.
  • Una virgola (") rappresentata dall'espressione regolare Unicode \u0022.
  • Un simbolo del dollaro ($) come rappresentato dall'espressione regolare Unicode \u0024.
  • Una parentesi aperta (() rappresentata dall'espressione regolare Unicode \u0028.
  • Una parentesi destra ()) rappresentata dall'espressione regolare Unicode \u0029.
  • Un asterisco (*) come rappresentato dall'espressione regolare Unicode \u002A.
  • Una virgola (,) rappresentata dall'espressione regolare Unicode \u002C.
  • Un punto (.) come rappresentato dall'espressione regolare Unicode \u002E.
  • Una barra (/) rappresentata dall'espressione regolare Unicode \u002F.
  • Un punto e virgola (;) rappresentato dall'espressione regolare Unicode \u003B.
  • Un punto interrogativo (?) come rappresentato dall'espressione regolare Unicode \u003F.
  • Un segno di at (@) come rappresentato dall'espressione regolare Unicode \u0040.@
  • Una parentesi quadra aperta ([) rappresentata dall'espressione regolare Unicode \u005B.
  • Una barra (\) rappresentata dall'espressione regolare Unicode \u005C.
  • Una parentesi quadra chiusa (]) rappresentata dall'espressione regolare Unicode \u005D.
  • Un accento circonflesso (^) come rappresentato dall'espressione regolare Unicode \u005E.
  • Un accento grave (`) come rappresentato dall'espressione regolare Unicode \u0060.
  • Una parentesi graffa aperta {{) rappresentata dall'espressione regolare Unicode \u007B.
  • Una parentesi graffa chiusa (}) rappresentata dall'espressione regolare Unicode \u007D.
  • Una tilde (~) rappresentata dall'espressione regolare Unicode \u007E.

Per ulteriori linee guida, consulta Nomi delle colonne.

I caratteri delle colonne espansi sono supportati sia dall'API BigQuery Storage Read sia dall'API BigQuery Storage Write. Per utilizzare l'elenco espanso dei caratteri Unicode con l'API BigQuery Storage di lettura, devi impostare un flag. Puoi utilizzare l'attributo displayName per recuperare il nome della colonna. L'esempio seguente illustra come impostare un flag con il client Python:

from google.cloud.bigquery_storage import types
requested_session = types.ReadSession()

#set avro serialization options for flexible column.
options = types.AvroSerializationOptions()
options.enable_display_name_attribute = True
requested_session.read_options.avro_serialization_options = options

Per utilizzare l'elenco espanso dei caratteri Unicode con l'API BigQuery Storage Write, devi fornire lo schema con la notazione column_name, a meno che non utilizzi l'oggetto scrittore JsonStreamWriter. L'esempio seguente mostra come fornire lo schema:

syntax = "proto2";
package mypackage;
// Source protos located in github.com/googleapis/googleapis
import "google/cloud/bigquery/storage/v1/annotations.proto";

message FlexibleSchema {
  optional string item_name_column = 1
  [(.google.cloud.bigquery.storage.v1.column_name) = "name-列"];
  optional string item_description_column = 2
  [(.google.cloud.bigquery.storage.v1.column_name) = "description-列"];
}

In questo esempio, item_name_column e item_description_column sono nomi segnaposto che devono essere conformi alla convenzione di denominazione del buffer del protocollo. Tieni presente che le annotazioni column_name hanno sempre la precedenza sui nomi dei segnaposto.

Limitazioni

I nomi di colonna flessibili non sono supportati con le tabelle esterne.

Descrizioni delle colonne

Ogni colonna può includere una descrizione facoltativa. La descrizione è una stringa con una lunghezza massima di 1024 caratteri.

Valori predefiniti

Il valore predefinito di una colonna deve essere un letterale o una delle seguenti funzioni:

Tipi di dati di GoogleSQL

GoogleSQL ti consente di specificare i seguenti tipi di dati nel tuo schema. Il tipo di dati è obbligatorio.

Nome Tipo di dati Descrizione
Numero intero INT64 Valori numerici senza componenti frazionari
Punto floating FLOAT64 Approssimare i valori numerici con componenti frazionari
Numerico NUMERIC Valori numerici esatti con componenti frazionari
BigNumeric BIGNUMERIC Valori numerici esatti con componenti frazionari
Valore booleano BOOL TRUE o FALSE (non è sensibile alle maiuscole)
Stringa STRING Dati di caratteri (Unicode) di lunghezza variabile
Byte BYTES Dati binari di lunghezza variabile
Data DATE Una data di calendario logica
Data/ora DATETIME Un anno, un mese, un giorno, un'ora, un minuto, un secondo e un sottosecondo
Ora TIME Un orario, indipendente da una data specifica
Timestamp TIMESTAMP Un punto di tempo assoluto, con precisione in microsecondi
Struct (Record) STRUCT Contenitore di campi ordinati ciascuno con un tipo (obbligatorio) e un nome (facoltativo)
Geografia GEOGRAPHY Un insieme di punti sulla superficie terrestre (un insieme di punti, linee e poligoni sullo sferoide di riferimento WGS84, con bordi geodetici)
JSON JSON Rappresenta JSON, un formato di interscambio dati leggero
RANGE RANGE Un intervallo di valori DATE, DATETIME o TIMESTAMP

Per saperne di più sui tipi di dati in GoogleSQL, consulta Tipi di dati GoogleSQL.

Puoi anche dichiarare un tipo di array quando esegui query sui dati. Per ulteriori informazioni, consulta Utilizzare gli array.

Modalità

BigQuery supporta le seguenti modalità per le colonne. La modalità è facoltativa. Se la modalità non è specificata, il valore predefinito della colonna è NULLABLE.

Modalità Descrizione
Ammette valori Null La colonna consente valori NULL (valore predefinito)
Obbligatorio I valori NULL non sono consentiti
Ripetuto La colonna contiene un array di valori del tipo specificato

Per ulteriori informazioni sulle modalità, consulta mode in TableFieldSchema.

Modalità di arrotondamento

Quando una colonna è di tipo NUMERIC o BIGNUMERIC, puoi impostare l'opzione della colonna rounding_mode, che determina il modo in cui i valori in quella colonna vengono arrotondati quando vengono scritti nella tabella. Puoi impostare l'opzione rounding_mode in una colonna di primo livello o in un campo STRUCT. Sono supportate le seguenti modalità di arrotondamento:

  • "ROUND_HALF_AWAY_FROM_ZERO": questa modalità (predefinita) arrotondamento a metà casi lontano da zero.
  • "ROUND_HALF_EVEN": questa modalità arrotonda a metà verso il numero pari più vicino.

Non puoi impostare l'opzione rounding_mode per una colonna di tipo diverso da NUMERIC o BIGNUMERIC. Per scoprire di più su questi tipi, consulta tipi decimali.

L'esempio seguente crea una tabella e inserisce valori arrotondati in base alla modalità di arrotondamento della colonna:

CREATE TABLE mydataset.mytable (
  x NUMERIC(5,2) OPTIONS (rounding_mode='ROUND_HALF_EVEN'),
  y NUMERIC(5,2) OPTIONS (rounding_mode='ROUND_HALF_AWAY_FROM_ZERO')
);
INSERT mydataset.mytable (x, y)
VALUES (NUMERIC "1.025", NUMERIC "1.025"),
       (NUMERIC "1.0251", NUMERIC "1.0251"),
       (NUMERIC "1.035", NUMERIC "1.035"),
       (NUMERIC "-1.025", NUMERIC "-1.025");

La tabella mytable ha il seguente aspetto:

+-------+-------+
| x     | y     |
+-------+-------+
| 1.02  | 1.03  |
| 1.03  | 1.03  |
| 1.04  | 1.04  |
| -1.02 | -1.03 |
+-------+-------+

Per ulteriori informazioni, consulta roundingMode in TableFieldSchema.

Specifica gli schemi

Quando carichi i dati o crei una tabella vuota, puoi specificare lo schema della tabella utilizzando la console Google Cloud o lo strumento a riga di comando bq. La specifica di uno schema è supportata quando carichi file CSV e JSON (delimitati da nuova riga). Quando carichi dati di esportazione Avro, Parquet, ORC, Firestore o Datastore, lo schema viene recuperato automaticamente dai dati di origine autodescrittivi.

Per specificare uno schema di tabella:

Console

Nella console Google Cloud, puoi specificare uno schema utilizzando l'opzione Aggiungi campo o Modifica come testo.

  1. Nella console Google Cloud, apri la pagina BigQuery.

    Vai a BigQuery

  2. Nel riquadro Spazio di esplorazione, espandi il progetto e seleziona un set di dati.

  3. Espandi l'opzione Azioni e fai clic su Apri.

  4. Nel riquadro dei dettagli, fai clic su Crea tabella .

  5. Nella sezione Origine della pagina Crea tabella, seleziona Tabella vuota.

  6. Nella sezione Destinazione della pagina Crea tabella:

    • Per Nome set di dati, scegli il set di dati appropriato.

      Seleziona il set di dati.

    • Nel campo Nome tabella, inserisci il nome della tabella che stai creando.

    • Verifica che Tipo di tabella sia impostato su Tabella nativa.

  7. Nella sezione Schema, inserisci la definizione dello schema.

    • Opzione 1: utilizza Aggiungi campo e specifica il nome, il tipo e la modalità di ogni campo.
    • Opzione 2: fai clic su Modifica come testo e incolla lo schema sotto forma di array JSON. Quando utilizzi un array JSON, generi lo schema utilizzando la stessa procedura utilizzata per creare un file di schema JSON.
  8. Fai clic su Crea tabella.

SQL

Utilizza l'istruzione CREATE TABLE. Specifica lo schema utilizzando l'opzione colonna. L'esempio seguente crea una nuova tabella denominata newtable con le colonne x, y, z di tipi interi, stringa e booleano:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Nell'editor di query, inserisci la seguente istruzione:

    CREATE TABLE IF NOT EXISTS mydataset.newtable (x INT64, y STRING, z BOOL)
      OPTIONS(
        description = 'My example table');

  3. Fai clic su Esegui.

Per ulteriori informazioni su come eseguire query, consulta Eseguire una query interattiva.

bq

Fornisci lo schema in linea nel formatofield:data_type,field:data_type utilizzando uno dei seguenti comandi:

  • Se stai caricando dati, utilizza il comando bq load.
  • Se stai creando una tabella vuota, utilizza il comando bq mk.

Quando specifichi lo schema sulla riga di comando, non puoi includere tipi RECORD (STRUCT) o RANGE, non puoi includere una descrizione della colonna e non puoi specificare la modalità della colonna. Per impostazione predefinita, tutte le modalità sono impostate su NULLABLE. Per includere descrizioni, modalità, tipi RECORD e tipi RANGE, fornisci un file schema JSON.

Per caricare i dati in una tabella utilizzando una definizione di schema in linea, inserisci il comando load e specifica il formato dei dati utilizzando il flag --source_format. Se carichi i dati in una tabella di un progetto diverso da quello predefinito, includi l'ID progetto nel seguente formato: project_id:dataset.table_name.

(Facoltativo) Fornisci il flag --location e imposta il valore sulla tua posizione.

bq --location=location load \
--source_format=format \
project_id:dataset.table_name \
path_to_source \
schema

Sostituisci quanto segue:

  • location: il nome della tua località. Il --location è facultativo. Ad esempio, se utilizzi BigQuery nella regione di Tokyo, puoi impostare il valore del flag su asia-northeast1. Puoi impostare un valore predefinito per la posizione utilizzando il file.bigqueryrc.
  • format: NEWLINE_DELIMITED_JSON o CSV.
  • project_id: il tuo ID progetto.
  • dataset: il set di dati che contiene la tabella in cui stai caricando i dati.
  • table_name: il nome della tabella in cui caricare i dati.
  • path_to_source: la posizione del file di dati CSV o JSON sulla tua macchina locale o in Cloud Storage.
  • schema: la definizione dello schema in linea.

Esempio:

Inserisci il seguente comando per caricare i dati da un file CSV locale denominato myfile.csv in mydataset.mytable nel progetto predefinito. Lo schema viene specificato in linea.

bq load \
--source_format=CSV \
mydataset.mytable \
./myfile.csv \
qtr:STRING,sales:FLOAT,year:STRING

Per ulteriori informazioni sul caricamento dei dati in BigQuery, consulta Introduzione al caricamento dei dati.

Per specificare una definizione di schema in linea quando crei una tabella vuota, inserisci il comando bq mk con il flag --table o -t. Se stai creando una tabella in un progetto diverso da quello predefinito, aggiungi l'ID progetto al comando nel seguente formato: project_id:dataset.table.

bq mk --table project_id:dataset.table schema

Sostituisci quanto segue:

  • project_id: il tuo ID progetto.
  • dataset: un set di dati nel tuo progetto.
  • table: il nome della tabella che stai creando.
  • schema: una definizione dello schema in linea.

Ad esempio, il seguente comando crea una tabella vuota denominata mytable nel tuo progetto predefinito. Lo schema è specificato in linea.

bq mk --table mydataset.mytable qtr:STRING,sales:FLOAT,year:STRING

Per ulteriori informazioni sulla creazione di una tabella vuota, consulta Creare una tabella vuota con una definizione di schema.

C#

Per specificare lo schema di una tabella quando carichi i dati in una tabella:

Prima di provare questo esempio, segui le istruzioni di configurazione C# riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery C#.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsJson
{
    public void LoadTableGcsJson(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
        var dataset = client.GetDataset(datasetId);
        var schema = new TableSchemaBuilder {
            { "name", BigQueryDbType.String },
            { "post_abbr", BigQueryDbType.String }
        }.Build();
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.NewlineDelimitedJson
        };
        // Create and run job
        BigQueryJob loadJob = client.CreateLoadJob(
            sourceUri: gcsURI, destination: destinationTableRef,
            schema: schema, options: jobOptions);
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Per specificare uno schema quando crei una tabella vuota:


using Google.Cloud.BigQuery.V2;

public class BigQueryCreateTable
{
    public BigQueryTable CreateTable(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var dataset = client.GetDataset(datasetId);
        // Create schema for new table.
        var schema = new TableSchemaBuilder
        {
            { "full_name", BigQueryDbType.String },
            { "age", BigQueryDbType.Int64 }
        }.Build();
        // Create the table
        return dataset.CreateTable(tableId: "your_table_id", schema: schema);
    }
}

Vai

Per specificare lo schema di una tabella quando carichi i dati in una tabella:

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Go.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importJSONExplicitSchema demonstrates loading newline-delimited JSON data from Cloud Storage
// into a BigQuery table and providing an explicit schema for the data.
func importJSONExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.json")
	gcsRef.SourceFormat = bigquery.JSON
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
	}
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Per specificare uno schema quando crei una tabella vuota:

import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// createTableExplicitSchema demonstrates creating a new BigQuery table and specifying a schema.
func createTableExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "full_name", Type: bigquery.StringFieldType},
		{Name: "age", Type: bigquery.IntegerFieldType},
	}

	metaData := &bigquery.TableMetadata{
		Schema:         sampleSchema,
		ExpirationTime: time.Now().AddDate(1, 0, 0), // Table will be automatically deleted in 1 year.
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Per specificare lo schema di una tabella quando carichi i dati in una tabella:

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Java.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load JSON data from Cloud Storage into a new BigQuery table
public class LoadJsonFromGCS {

  public static void runLoadJsonFromGCS() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadJsonFromGCS(datasetName, tableName, sourceUri, schema);
  }

  public static void loadJsonFromGCS(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.json())
              .setSchema(schema)
              .build();

      // Load data from a GCS JSON file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Json from GCS successfully loaded in a table");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Per specificare uno schema quando crei una tabella vuota:

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

public class CreateTable {

  public static void runCreateTable() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL));
    createTable(datasetName, tableName, schema);
  }

  public static void createTable(String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      TableDefinition tableDefinition = StandardTableDefinition.of(schema);
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Python

Per specificare lo schema di una tabella quando carichi i dati in una tabella, configura la proprietà LoadJobConfig.schema.

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON,
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.json"

load_job = client.load_table_from_uri(
    uri,
    table_id,
    location="US",  # Must match the destination dataset location.
    job_config=job_config,
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Per specificare uno schema quando crei una tabella vuota, configura la proprietà Table.schema.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
    bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
]

table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Specifica di un file di schema JSON

Se preferisci, puoi specificare lo schema utilizzando un file schema JSON anziché una definizione di schema in linea. Un file dello schema JSON è costituito da un array JSON contenente quanto segue:

  • Il nome della colonna
  • Il tipo di dati della colonna
  • (Facoltativo) La modalità della colonna (se non specificata, la modalità predefinita è NULLABLE)
  • (Facoltativo) I campi della colonna se è di tipo STRUCT
  • (Facoltativo) La descrizione della colonna
  • (Facoltativo) I tag di criteri della colonna, utilizzati per il controllo dell'accesso a livello di campo
  • (Facoltativo) La lunghezza massima dei valori della colonna per i tipi STRING o BYTES
  • (Facoltativo) La precisione della colonna per i tipi NUMERIC o BIGNUMERIC
  • (Facoltativo) La scala della colonna per i tipi NUMERIC o BIGNUMERIC
  • (Facoltativo) La collation della colonna per i tipi STRING
  • (Facoltativo) Il valore predefinito della colonna
  • (Facoltativo) La modalità di arrotondamento della colonna, se è di tipo NUMERIC o BIGNUMERIC

Creazione di un file di schema JSON

Per creare un file dello schema JSON, inserisci un TableFieldSchema per ogni colonna. I campi name e type sono obbligatori. Tutti gli altri campi sono facoltativi.

[
  {
    "name": string,
    "type": string,
    "mode": string,
    "fields": [
      {
        object (TableFieldSchema)
      }
    ],
    "description": string,
    "policyTags": {
      "names": [
        string
      ]
    },
    "maxLength": string,
    "precision": string,
    "scale": string,
    "collation": string,
    "defaultValueExpression": string,
    "roundingMode": string
  },
  {
    "name": string,
    "type": string,
    ...
  }
]

Se la colonna è di tipo RANGE<T>, utilizza il campo rangeElementType per descrivere T, dove T deve essere uno dei valori DATE, DATETIME o TIMESTAMP.

[
  {
    "name": "duration",
    "type": "RANGE",
    "mode": "NULLABLE",
    "rangeElementType": {
      "type": "DATE"
    }
  }
]

L'array JSON è indicato dalle parentesi graffe di inizio e di fine []. Ogni voce della colonna deve essere separata da una virgola: },.

Per scrivere uno schema di tabella esistente in un file locale:

bq

bq show \
--schema \
--format=prettyjson \
project_id:dataset.table > path_to_file

Sostituisci quanto segue:

  • project_id: il tuo ID progetto.
  • dataset: un set di dati nel tuo progetto.
  • table: il nome di uno schema di tabella esistente.
  • path_to_file: la posizione del file locale in cui stai scrivendo lo schema della tabella.

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

Per scrivere un file JSON dello schema da una tabella utilizzando la libreria client Python, chiama il metodo Client.schema_to_json.
from google.cloud import bigquery

client = bigquery.Client()

# TODO(dev): Change the table_id variable to the full name of the
# table you want to get schema from.
table_id = "your-project.your_dataset.your_table_name"

# TODO(dev): Change schema_path variable to the path
# of your schema file.
schema_path = "path/to/schema.json"
table = client.get_table(table_id)  # Make an API request.

# Write a schema file to schema_path with the schema_to_json method.
client.schema_to_json(table.schema, schema_path)

with open(schema_path, "r", encoding="utf-8") as schema_file:
    schema_contents = schema_file.read()

# View table properties
print(f"Got table '{table.project}.{table.dataset_id}.{table.table_id}'.")
print(f"Table schema: {schema_contents}")

Puoi utilizzare il file di output come punto di partenza per il tuo file dello schema JSON. Se utilizzi questo approccio, assicurati che il file contenga solo l'array JSON che rappresenta lo schema della tabella.

Ad esempio, l'array JSON seguente rappresenta uno schema di tabella di base. Questo schema ha tre colonne: qtr (REQUIRED STRING), rep (NULLABLE STRING) e sales (NULLABLE FLOAT).

[
  {
    "name": "qtr",
    "type": "STRING",
    "mode": "REQUIRED",
    "description": "quarter"
  },
  {
    "name": "rep",
    "type": "STRING",
    "mode": "NULLABLE",
    "description": "sales representative"
  },
  {
    "name": "sales",
    "type": "FLOAT",
    "mode": "NULLABLE",
    "defaultValueExpression": "2.55"
  }
]

Utilizzo di un file schema JSON

Dopo aver creato il file dello schema JSON, puoi specificarlo utilizzando lo strumento a riga di comando bq. Non puoi utilizzare un file di schema con la console Google Cloud o l'API.

Fornisci il file dello schema:

  • Se carichi dati, utilizza il comando bq load.
  • Se stai creando una tabella vuota, utilizza il comando bq mk.

Quando fornisci un file schema JSON, deve essere archiviato in una posizione in cui è possibile leggerlo localmente. Non puoi specificare un file schema JSON archiviato in Cloud Storage o su Google Drive.

Specifica di un file di schema durante il caricamento dei dati

Per caricare i dati in una tabella utilizzando una definizione dello schema JSON, procedi nel seguente modo:

bq

bq --location=location load \
--source_format=format \
project_id:dataset.table \
path_to_data_file \
path_to_schema_file

Sostituisci quanto segue:

  • location: il nome della tua località. Il --location è facultativo. Ad esempio, se utilizzi BigQuery nella regione di Tokyo, puoi impostare il valore del flag su asia-northeast1. Puoi impostare un valore predefinito per la posizione utilizzando il file.bigqueryrc.
  • format: NEWLINE_DELIMITED_JSON o CSV.
  • project_id: il tuo ID progetto.
  • dataset: il set di dati che contiene la tabella in cui stai caricando i dati.
  • table: il nome della tabella in cui stai caricando i dati.
  • path_to_data_file: la posizione del file di dati CSV o JSON sulla tua macchina locale o in Cloud Storage.
  • path_to_schema_file: il percorso del file dello schema sulla tua macchina locale.

Esempio:

Inserisci il seguente comando per caricare i dati da un file CSV locale denominato myfile.csv in mydataset.mytable nel progetto predefinito. Lo schema è specificato in myschema.json nella directory corrente.

bq load --source_format=CSV mydataset.mytable ./myfile.csv ./myschema.json

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

Per caricare lo schema di una tabella da un file JSON utilizzando la libreria client Python, chiama il metodo schema_from_json.
from google.cloud import bigquery

client = bigquery.Client()

# TODO(dev): Change uri variable to the path of your data file.
uri = "gs://your-bucket/path/to/your-file.csv"
# TODO(dev): Change table_id to the full name of the table you want to create.
table_id = "your-project.your_dataset.your_table"
# TODO(dev): Change schema_path variable to the path of your schema file.
schema_path = "path/to/schema.json"
# To load a schema file use the schema_from_json method.
schema = client.schema_from_json(schema_path)

job_config = bigquery.LoadJobConfig(
    # To use the schema you loaded pass it into the
    # LoadJobConfig constructor.
    schema=schema,
    skip_leading_rows=1,
)

# Pass the job_config object to the load_table_from_file,
# load_table_from_json, or load_table_from_uri method
# to use the schema on a new table.
load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)  # Make an API request.
print(f"Loaded {destination_table.num_rows} rows to {table_id}.")

Specifica di un file di schema quando crei una tabella

Per creare una tabella vuota in un set di dati esistente utilizzando un file di schema JSON:

bq

bq mk --table project_id:dataset.table path_to_schema_file

Sostituisci quanto segue:

  • project_id: il tuo ID progetto.
  • dataset: un set di dati nel tuo progetto.
  • table: il nome della tabella che stai creando.
  • path_to_schema_file: il percorso del file dello schema sulla tua macchina locale.

Ad esempio, il seguente comando crea una tabella denominata mytable in mydataset nel progetto predefinito. Lo schema è specificato in myschema.json nella directory corrente:

bq mk --table mydataset.mytable ./myschema.json

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

Per caricare lo schema di una tabella da un file JSON utilizzando la libreria client Python, chiama il metodo schema_from_json.
from google.cloud import bigquery

client = bigquery.Client()

# TODO(dev): Change table_id to the full name of the table you want to create.
table_id = "your-project.your_dataset.your_table_name"
# TODO(dev): Change schema_path variable to the path of your schema file.
schema_path = "path/to/schema.json"
# To load a schema file use the schema_from_json method.
schema = client.schema_from_json(schema_path)

table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)  # API request
print(f"Created table {table_id}.")

Specifica di uno schema nell'API

Specifica uno schema tabella utilizzando l'API:

La specifica di uno schema tramite l'API è simile alla procedura per la creazione di un file di schema JSON.

Sicurezza della tabella

Per controllare l'accesso alle tabelle in BigQuery, consulta Introduzione ai controlli di accesso alle tabelle.

Passaggi successivi