コネクテッド シートを BigQuery ML の予測モデルと組み合わせて、ビジネス プロセスで ML を運用する方法について説明します。このパターンでは、Google アナリティクスのデータを使用してウェブサイト トラフィックの予測モデルをビルドする方法について説明します。このパターンは、他のデータ型やその他の ML モデルで機能するように拡張できます。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-03-06 UTC。"],[[["This page provides resources such as business use cases, sample code, and technical guides for various BigQuery ML applications."],["Learn to create propensity models with logistic regression, which can determine the likelihood of user engagement, such as returning to your app."],["Explore time-series forecasting patterns to build models for predicting retail demand for products."],["Discover how to combine Connected Sheets with a forecasting model in BigQuery ML to operationalize machine learning for business tasks, like forecasting website traffic."],["Utilize anomaly detection patterns to identify and analyze potential credit card fraud in real-time using machine learning models trained in BigQuery ML."]]],[]]