CREATE MODEL ステートメントと推論関数のデフォルト設定を使用すると、ML の知識がなくても BigQuery ML モデルを作成して使用できます。ただし、特徴量エンジニアリングやモデル トレーニングなど、ML 開発ライフサイクルに関する基本的な知識があれば、データとモデルの両方を最適化して、より良い結果を得るのに役立ちます。ML の手法とプロセスに習熟するために、次のリソースの活用をおすすめします。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-09-04 UTC。"],[[["\u003cp\u003eFeature preprocessing, encompassing both feature creation (engineering) and data cleaning, is a crucial step in the machine learning process.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML offers automatic preprocessing during training, simplifying the process for users.\u003c/p\u003e\n"],["\u003cp\u003eManual preprocessing is also available in BigQuery ML, allowing for custom preprocessing definitions using the \u003ccode\u003eTRANSFORM\u003c/code\u003e clause and specific functions.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eML.FEATURE_INFO\u003c/code\u003e function enables users to retrieve statistics about the input feature columns.\u003c/p\u003e\n"],["\u003cp\u003eBasic knowledge of the ML development lifecycle, including feature engineering and model training, is recommended for better optimization of data and models.\u003c/p\u003e\n"]]],[],null,["# Feature preprocessing overview\n==============================\n\n*Feature preprocessing* is one of the most important steps in the machine\nlearning lifecycle. It consists of creating features and cleaning the training\ndata. Creating features is also referred as *feature engineering*.\n\nBigQuery ML provides the following feature preprocessing techniques:\n\n- **Automatic preprocessing** . BigQuery ML performs automatic\n preprocessing during training. For more information, see [Automatic feature\n preprocessing](/bigquery/docs/reference/standard-sql/bigqueryml-auto-preprocessing).\n\n- **Manual preprocessing** . You can use the [`TRANSFORM` clause](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create#transform)\n in the `CREATE MODEL` statement to define custom preprocessing using [manual\n preprocessing\n functions](/bigquery/docs/manual-preprocessing#types_of_preprocessing_functions).\n You can also use these functions outside of the `TRANSFORM` clause to\n process training data before creating the model.\n\nGet feature information\n-----------------------\n\nYou can use the [`ML.FEATURE_INFO`\nfunction](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-feature) to\nretrieve the statistics of all input feature columns.\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\ninference functions, you can create and use BigQuery ML models\neven without much ML knowledge. However, having basic knowledge about the\nML development lifecycle, such as feature engineering and model training,\nhelps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Data Cleaning](https://www.kaggle.com/learn/data-cleaning)\n- [Feature Engineering](https://www.kaggle.com/learn/feature-engineering)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)\n\nWhat's next\n-----------\n\nLearn about [feature serving](/bigquery/docs/feature-serving) in\nBigQuery ML."]]