Charger des données ORC à partir de Cloud Storage

Cette page vous offre un aperçu du chargement de données ORC depuis Cloud Storage dans BigQuery.

ORC est un format de données Open Source orienté colonnes dont l'utilisation est très répandue dans l'écosystème Apache Hadoop.

Lorsque vous chargez des données ORC depuis Cloud Storage, vous pouvez les placer dans une nouvelle table ou partition, les ajouter à une table ou partition existante, ou bien les utiliser pour écraser ces dernières. Lorsque les données sont chargées dans BigQuery, elles sont converties au format en colonnes de Capacitor (format de stockage de BigQuery).

Lorsque vous chargez des données depuis Cloud Storage dans une table BigQuery, l'ensemble de données contenant la table doit se trouver au même emplacement régional ou multirégional que le bucket Cloud Storage.

Pour en savoir plus sur le chargement des données ORC à partir d'un fichier local, consultez la page Charger des données dans BigQuery à partir d'une source de données locale.

Limites

Vous êtes soumis aux limitations suivantes lorsque vous chargez des données dans BigQuery à partir d'un bucket Cloud Storage :

  • Si l'emplacement de votre ensemble de données est défini sur une valeur autre que l'emplacement multirégional US, le bucket Cloud Storage doit se trouver dans la même région que l'ensemble de données, ou figurer dans le même emplacement multirégional que celui-ci.
  • BigQuery ne garantit pas la cohérence des données pour les sources de données externes. Les modifications apportées aux données sous-jacentes lors de l'exécution d'une requête peuvent entraîner un comportement inattendu.
  • BigQuery n'est pas compatible avec la gestion des versions d'objets Cloud Storage. Si vous incluez un numéro de génération dans l'URI Cloud Storage, la tâche de chargement échoue.

Avant de commencer

Attribuez aux utilisateurs des rôles IAM (Identity and Access Management) incluant les autorisations nécessaires pour effectuer l'ensemble des tâches de ce document et créer un ensemble de données pour stocker les données.

Autorisations requises

Pour charger des données dans BigQuery, vous devez disposer d'autorisations IAM pour exécuter une tâche de chargement et charger des données dans des tables et partitions BigQuery. Si vous chargez des données à partir de Cloud Storage, vous devez également disposer d'autorisations IAM pour accéder au bucket contenant vos données.

Autorisations pour charger des données dans BigQuery

Pour charger des données dans une nouvelle table ou partition BigQuery, ou pour ajouter ou écraser une table ou une partition existante, vous avez besoin des autorisations IAM suivantes :

  • bigquery.tables.create
  • bigquery.tables.updateData
  • bigquery.tables.update
  • bigquery.jobs.create

Chacun des rôles IAM prédéfinis suivants inclut les autorisations dont vous avez besoin pour charger des données dans une table ou une partition BigQuery :

  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.admin (inclut l'autorisation bigquery.jobs.create)
  • bigquery.user (inclut l'autorisation bigquery.jobs.create)
  • bigquery.jobUser (inclut l'autorisation bigquery.jobs.create)

En outre, si vous disposez de l'autorisation bigquery.datasets.create, vous pouvez créer et mettre à jour des tables à l'aide d'une tâche de chargement dans les ensembles de données que vous créez.

Pour en savoir plus sur les rôles et les autorisations IAM dans BigQuery, consultez la page Rôles prédéfinis et autorisations.

Autorisations pour charger des données à partir de Cloud Storage

Pour obtenir les autorisations nécessaires pour charger des données à partir d'un bucket Cloud Storage, demandez à votre administrateur de vous accorder le rôle IAM Administrateur Storage (roles/storage.admin) sur le bucket. Pour en savoir plus sur l'attribution de rôles, consultez la page Gérer l'accès aux projets, aux dossiers et aux organisations.

Ce rôle prédéfini contient les autorisations requises pour charger des données à partir d'un bucket Cloud Storage. Pour connaître les autorisations exactes requises, développez la section Autorisations requises :

Autorisations requises

Vous devez disposer des autorisations suivantes pour charger des données à partir d'un bucket Cloud Storage :

  • storage.buckets.get
  • storage.objects.get
  • storage.objects.list (required if you are using a URI wildcard)

Vous pouvez également obtenir ces autorisations avec des rôles personnalisés ou d'autres rôles prédéfinis.

Créer un ensemble de données

Créez un ensemble de données BigQuery pour stocker vos données.

Schémas ORC

Lorsque vous chargez des fichiers ORC dans BigQuery, le schéma de la table est automatiquement extrait des données sources auto-descriptives. Lorsque BigQuery récupère le schéma à partir des données sources, le fichier qui figure en dernier selon l'ordre alphabétique est utilisé.

Par exemple, si vous disposez des fichiers ORC suivants dans Cloud Storage :

gs://mybucket/00/
  a.orc
  z.orc
gs://mybucket/01/
  b.orc

L'exécution de cette commande dans l'outil de ligne de commande bq charge tous les fichiers (sous forme de liste d'éléments séparés par une virgule). Le schéma est obtenu à partir de mybucket/01/b.orc :

bq load \
--source_format=ORC \
dataset.table \
"gs://mybucket/00/*.orc","gs://mybucket/01/*.orc"

Lorsque BigQuery détecte le schéma, certains types de données ORC sont convertis en types de données BigQuery de façon qu'ils soient compatibles avec la syntaxe GoogleSQL. Tous les champs du schéma détecté sont en mode NULLABLE. Pour en savoir plus, consultez la section Conversions ORC.

Lorsque vous chargez plusieurs fichiers ORC ayant des schémas différents, les champs identiques (même nom et même niveau imbriqué) spécifiés dans plusieurs schémas doivent être mappés au même type de données BigQuery converti dans chaque définition de schéma.

Pour fournir un schéma de table permettant de créer des tables externes, définissez la propriété referenceFileSchemaUri dans l'API BigQuery, ou le paramètre
--reference_file_schema_uri dans l'outil de ligne de commande bq sur l'URL du fichier de référence.

Par exemple, --reference_file_schema_uri="gs://mybucket/schema.orc".

Compression ORC

BigQuery accepte les codecs de compression suivants pour le contenu des fichiers ORC :

  • Zlib
  • Snappy
  • LZO
  • LZ4

Les données des fichiers ORC ne sont pas compressées après leur importation dans BigQuery. Le stockage des données est indiqué en octets logiques ou en octets physiques, selon le modèle de facturation de l'espace de stockage de l'ensemble de données. Pour obtenir des informations sur l'utilisation de l'espace de stockage, interrogez la vue INFORMATION_SCHEMA.TABLE_STORAGE.

Charger des données ORC dans une nouvelle table

Vous pouvez charger des données ORC dans une nouvelle table de plusieurs façons :

  • En utilisant la console Google Cloud
  • En exécutant la commande bq load de l'outil de ligne de commande bq
  • En appelant la méthode API jobs.insert et en configurant une tâche load
  • En utilisant les bibliothèques clientes

Pour charger des données ORC à partir de Cloud Storage dans une nouvelle table BigQuery, procédez comme suit :

Console

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans le volet Explorateur, développez votre projet, puis sélectionnez un ensemble de données.
  3. Dans la section Informations sur l'ensemble de données, cliquez sur Créer une table.
  4. Dans le panneau Créer une table, spécifiez les détails suivants :
    1. Dans la section Source, sélectionnez Google Cloud Storage dans la liste Créer une table à partir de. Ensuite, procédez comme suit :
      1. Sélectionnez un fichier dans le bucket Cloud Storage ou saisissez l'URI Cloud Storage. Vous ne pouvez pas inclure plusieurs URI dans la console Google Cloud. En revanche, les caractères génériques sont acceptés. Le bucket Cloud Storage doit se trouver au même emplacement que l'ensemble de données contenant la table que vous souhaitez créer, ajouter ou écraser. Sélection d'un fichier source pour créer une table BigQuery
      2. Sous Format de fichier, sélectionnez ORC.
    2. Dans la section Destination, spécifiez les détails suivants :
      1. Pour Ensemble de données, sélectionnez l'ensemble de données dans lequel vous souhaitez créer la table.
      2. Dans le champ Table, saisissez le nom de la table que vous souhaitez créer.
      3. Vérifiez que le champ Type de table est défini sur Table native.
    3. Aucune action n'est nécessaire dans la section Schéma. Le schéma est auto-décrit dans les fichiers ORC.
    4. Facultatif : spécifiez les paramètres de partitionnement et de clustering. Pour en savoir plus, consultez les pages Créer des tables partitionnées et Créer et utiliser des tables en cluster.
    5. Cliquez sur Options avancées et procédez comme suit :
      • Sous Préférence d'écriture, laissez l'option Écrire si la table est vide sélectionnée. Cette option crée une table et y charge vos données.
      • Si vous souhaitez ignorer les valeurs d'une ligne qui ne sont pas présentes dans le schéma de la table, sélectionnez Valeurs inconnues.
      • Pour le champ Chiffrement, cliquez sur Clé gérée par le client afin d'utiliser une clé Cloud Key Management Service. Si vous conservez le paramètre Clé gérée par Google, BigQuery chiffre les données au repos.
    6. Cliquez sur Créer la table.

SQL

Utilisez l'instruction LDD LOAD DATA : L'exemple suivant charge un fichier ORC dans la nouvelle table mytable :

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, saisissez l'instruction suivante :

    LOAD DATA OVERWRITE mydataset.mytable
    FROM FILES (
      format = 'ORC',
      uris = ['gs://bucket/path/file.orc']);

  3. Cliquez sur Exécuter.

Pour en savoir plus sur l'exécution des requêtes, consultez Exécuter une requête interactive.

bq

Exécutez la commande bq load en définissant l'option source_format sur "ORC" et en ajoutant un URI Cloud Storage. Vous pouvez inclure un seul URI, une liste d'URI séparés par une virgule ou un URI contenant un caractère générique.

(Facultatif) Spécifiez l'option --location et définissez la valeur correspondant à votre emplacement.

Les autres indicateurs facultatifs sont les suivants :

  • --time_partitioning_type : active le partitionnement temporel sur une table et définit le type de partition. Les valeurs possibles sont HOUR, DAY, MONTH et YEAR. Cette option est facultative lorsque vous créez une table partitionnée sur une colonne DATE, DATETIME ou TIMESTAMP. Le type de partition par défaut pour le partitionnement temporel est DAY. Vous ne pouvez pas modifier la spécification de partitionnement sur une table existante.
  • --time_partitioning_expiration : entier qui spécifie (en secondes) le délai au terme duquel une partition temporelle doit être supprimée. Le délai d'expiration correspond à la date UTC de la partition plus la valeur entière.
  • --time_partitioning_field : colonne DATE ou TIMESTAMP utilisée pour créer une table partitionnée. Si le partitionnement par date est activé sans cette valeur, une table partitionnée par date d'ingestion est créée.
  • --require_partition_filter : si cette option est activée, elle oblige les utilisateurs à inclure une clause WHERE spécifiant les partitions à interroger. Ce type de filtre peut contribuer à réduire les coûts et à améliorer les performances. Pour en savoir plus, consultez la section Interroger des tables partitionnées.
  • --clustering_fields : liste pouvant contenir jusqu'à quatre noms de colonne séparés par une virgule, et utilisée pour créer une table en cluster.
  • --destination_kms_key : clé Cloud KMS pour le chiffrement des données de la table.

    Pour en savoir plus sur les tables partitionnées, consultez la section :

    Pour en savoir plus sur les tables en cluster, consultez la section :

    Pour en savoir plus sur le chiffrement d'une table, consultez la section :

Pour charger des données ORC dans BigQuery, saisissez la commande suivante :

bq --location=location load \
--source_format=format \
dataset.table \
path_to_source

Où :

  • location correspond à votre emplacement. L'option --location est facultative. Par exemple, si vous utilisez BigQuery dans la région de Tokyo, vous pouvez définir la valeur de l'option sur asia-northeast1. Vous pouvez définir une valeur par défaut correspondant à l'emplacement en utilisant le fichier .bigqueryrc.
  • format est ORC.
  • dataset est un ensemble de données existant.
  • table est le nom de la table dans laquelle vous chargez des données.
  • path_to_source est un URI Cloud Storage complet ou une liste d'URI séparés par une virgule. Les caractères génériques sont également acceptés.

Exemples :

La commande suivante permet de charger les données de gs://mybucket/mydata.orc dans la table mytable de mydataset.

    bq load \
    --source_format=ORC \
    mydataset.mytable \
    gs://mybucket/mydata.orc

La commande suivante permet de charger les données de gs://mybucket/mydata.orc dans une nouvelle table partitionnée par date d'ingestion nommée mytable dans mydataset.

    bq load \
    --source_format=ORC \
    --time_partitioning_type=DAY \
    mydataset.mytable \
    gs://mybucket/mydata.orc

La commande suivante permet de charger les données de gs://mybucket/mydata.orc dans la table partitionnée mytable de mydataset. La table est partitionnée en fonction de la colonne mytimestamp.

    bq load \
    --source_format=ORC \
    --time_partitioning_field mytimestamp \
    mydataset.mytable \
    gs://mybucket/mydata.orc

La commande ci-dessous permet de charger les données de plusieurs fichiers de gs://mybucket/ dans une table nommée mytable dans l'ensemble de données mydataset. L'URI Cloud Storage utilise un caractère générique.

    bq load \
    --source_format=ORC \
    mydataset.mytable \
    gs://mybucket/mydata*.orc

La commande ci-dessous permet de charger les données de plusieurs fichiers de gs://mybucket/ dans une table nommée mytable dans l'ensemble de données mydataset. La commande inclut une liste d'URI Cloud Storage séparés par une virgule.

    bq load --autodetect \
    --source_format=ORC \
    mydataset.mytable \
    "gs://mybucket/00/*.orc","gs://mybucket/01/*.orc"

API

  1. Créez une tâche de chargement (load) qui pointe vers les données sources dans Cloud Storage.

  2. (Facultatif) Spécifiez votre emplacement dans la propriété location de la section jobReference de la ressource de tâche.

  3. La propriété source URIs doit être complète et respecter le format gs://bucket/object. Chaque URI peut contenir un caractère générique (*).

  4. Spécifiez le format de données ORC en définissant la propriété sourceFormat sur ORC.

  5. Pour vérifier l'état de la tâche, appelez jobs.get(job_id*), où job_id correspond à l'ID de tâche renvoyé par la requête initiale.

    • Si la réponse est status.state = DONE, la tâche a bien été exécutée.
    • Si la propriété status.errorResult est présente, la requête a échoué. Cet objet inclut des informations décrivant le problème rencontré. Lorsqu'une requête échoue, aucune table n'est créée et aucune donnée n'est ajoutée.
    • Si la propriété status.errorResult est absente, la tâche a bien été exécutée. Toutefois, des erreurs non fatales, telles que des problèmes d'importation de lignes, ont pu se produire. Ces erreurs sont répertoriées dans la propriété status.errors de l'objet de tâche renvoyé.

Remarques relatives à l'API :

  • Les tâches de chargement sont atomiques et cohérentes. En cas d'échec d'une tâche de chargement, aucune donnée n'est disponible. Si une tâche aboutit, toutes les données sont disponibles.

  • Nous vous recommandons de générer un ID unique et de le transmettre en tant que jobReference.jobId lorsque vous appelez jobs.insert pour créer un job de chargement. Cette approche offre une protection plus robuste contre les pannes réseau, car le client peut lancer une requête ou effectuer de nouvelles tentatives en utilisant l'ID de job connu.

  • L'appel de jobs.insert avec un ID de tâche donné est idempotent. Vous pouvez effectuer autant de tentatives que vous le souhaitez avec le même ID de tâche. L'une de ces opérations tout au plus aboutira.

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour C#.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsOrc
{
    public void LoadTableGcsOrc(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.orc";
        var dataset = client.GetDataset(datasetId);
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.Orc
        };
        // Create and run job
        var loadJob = client.CreateLoadJob(
            sourceUri: gcsURI,
            destination: destinationTableRef,
            // Pass null as the schema because the schema is inferred when
            // loading Orc data
            schema: null,
            options: jobOptions
        );
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Go.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importORCTruncate demonstrates loading Apache ORC data from Cloud Storage into a table.
func importORC(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.orc")
	gcsRef.SourceFormat = bigquery.ORC
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load ORC data from Cloud Storage into a new BigQuery table
public class LoadOrcFromGCS {

  public static void runLoadOrcFromGCS() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.orc";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadOrcFromGCS(datasetName, tableName, sourceUri, schema);
  }

  public static void loadOrcFromGCS(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri, FormatOptions.orc())
              .setSchema(schema)
              .build();

      // Load data from a GCS ORC file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone() && job.getStatus().getError() == null) {
        System.out.println("ORC from GCS successfully added during load append job");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Node.js.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the ORC file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.orc
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.orc';

async function loadTableGCSORC() {
  // Imports a GCS file into a table with ORC source format.

  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table'

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'ORC',
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);

  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour PHP.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId  = 'The Google project ID';
// $datasetId  = 'The BigQuery dataset ID';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table('us_states');

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.orc';
$loadConfig = $table->loadFromStorage($gcsUri)->sourceFormat('ORC');
$job = $table->runJob($loadConfig);
// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});
// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name

job_config = bigquery.LoadJobConfig(source_format=bigquery.SourceFormat.ORC)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.orc"

load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Ruby.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

require "google/cloud/bigquery"

def load_table_gcs_orc dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.orc"
  table_id = "us_states"

  load_job = dataset.load_job table_id, gcs_uri, format: "orc"
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done! # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table table_id
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Ajouter ou écraser une table avec des données ORC

Vous pouvez charger des données supplémentaires dans une table à partir de fichiers sources ou en ajoutant des résultats de requête.

Dans la console Google Cloud, utilisez l'option Préférence d'écriture pour spécifier l'action à entreprendre lorsque vous chargez des données à partir d'un fichier source ou d'un résultat de requête.

Vous disposez des options suivantes lorsque vous chargez des données supplémentaires dans une table :

Option de la console Option de l'outil bq Propriété de l'API BigQuery Description
Écrire si la table est vide Non compatible WRITE_EMPTY N'écrit les données que si la table est vide.
Ajouter à la table --noreplace ou --replace=false. Si --[no]replace n'est pas spécifié, les données sont ajoutées par défaut. WRITE_APPEND (Par défaut) Ajoute les données à la fin de la table.
Écraser la table --replace ou --replace=true WRITE_TRUNCATE Efface toutes les données existantes d'une table avant d'écrire les nouvelles données. Cette action supprime également le schéma de la table, la sécurité au niveau des lignes et la clé Cloud KMS.

Si vous chargez des données dans une table existante, la tâche de chargement peut les ajouter ou écraser la table.

Vous pouvez ajouter des données ou écraser une table de plusieurs façons :

  • En utilisant la console Google Cloud
  • En exécutant la commande bq load de l'outil de ligne de commande bq
  • En appelant la méthode API jobs.insert et en configurant une tâche load
  • En utilisant les bibliothèques clientes

Pour ajouter ou écraser des données ORC dans une table, procédez comme suit :

Console

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans le volet Explorateur, développez votre projet, puis sélectionnez un ensemble de données.
  3. Dans la section Informations sur l'ensemble de données, cliquez sur Créer une table.
  4. Dans le panneau Créer une table, spécifiez les détails suivants :
    1. Dans la section Source, sélectionnez Google Cloud Storage dans la liste Créer une table à partir de. Ensuite, procédez comme suit :
      1. Sélectionnez un fichier dans le bucket Cloud Storage ou saisissez l'URI Cloud Storage. Vous ne pouvez pas inclure plusieurs URI dans la console Google Cloud. En revanche, les caractères génériques sont acceptés. Le bucket Cloud Storage doit se trouver au même emplacement que l'ensemble de données contenant la table que vous souhaitez créer, ajouter ou écraser. Sélection d'un fichier source pour créer une table BigQuery
      2. Sous Format de fichier, sélectionnez ORC.
    2. Dans la section Destination, spécifiez les détails suivants :
      1. Pour Ensemble de données, sélectionnez l'ensemble de données dans lequel vous souhaitez créer la table.
      2. Dans le champ Table, saisissez le nom de la table que vous souhaitez créer.
      3. Vérifiez que le champ Type de table est défini sur Table native.
    3. Aucune action n'est nécessaire dans la section Schéma. Le schéma est auto-décrit dans les fichiers ORC.
    4. Facultatif : spécifiez les paramètres de partitionnement et de clustering. Pour en savoir plus, consultez les pages Créer des tables partitionnées et Créer et utiliser des tables en cluster. Vous ne pouvez pas convertir une table en table partitionnée ou en cluster en y ajoutant des données ou les écrasant. La console Google Cloud ne permet pas d'ajouter ni d'écraser des données dans des tables partitionnées ou en cluster lors d'une tâche de chargement.
    5. Cliquez sur Options avancées et procédez comme suit :
      • Sous Préférences d'écriture, choisissez Ajouter à la table ou Écraser la table.
      • Si vous souhaitez ignorer les valeurs d'une ligne qui ne sont pas présentes dans le schéma de la table, sélectionnez Valeurs inconnues.
      • Pour le champ Chiffrement, cliquez sur Clé gérée par le client afin d'utiliser une clé Cloud Key Management Service. Si vous conservez le paramètre Clé gérée par Google, BigQuery chiffre les données au repos.
    6. Cliquez sur Créer la table.

SQL

Utilisez l'instruction LDD LOAD DATA : L'exemple suivant ajoute un fichier ORC à la table mytable :

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, saisissez l'instruction suivante :

    LOAD DATA INTO mydataset.mytable
    FROM FILES (
      format = 'ORC',
      uris = ['gs://bucket/path/file.orc']);

  3. Cliquez sur Exécuter.

Pour en savoir plus sur l'exécution des requêtes, consultez Exécuter une requête interactive.

bq

Saisissez la commande bq load avec l'option --replace pour écraser la table. Utilisez l'option --noreplace pour ajouter des données à la table. Si aucun paramètre n'est spécifié, les données sont ajoutées par défaut. Fournissez l'option --source_format et définissez-la sur ORC. Étant donné que les schémas ORC sont automatiquement récupérés à partir des données sources auto-descriptives, il n'est pas nécessaire de fournir une définition de schéma.

(Facultatif) Spécifiez l'option --location et définissez la valeur correspondant à votre emplacement.

Les autres indicateurs facultatifs sont les suivants :

  • --destination_kms_key : clé Cloud KMS pour le chiffrement des données de la table.
bq --location=location load \
--[no]replace \
--source_format=format \
dataset.table \
path_to_source

Où :

  • location correspond à votre emplacement. L'option --location est facultative ; Vous pouvez spécifier une valeur par défaut pour l'emplacement à l'aide du fichier .bigqueryrc ;
  • format est ORC.
  • dataset est un ensemble de données existant.
  • table est le nom de la table dans laquelle vous chargez des données.
  • path_to_source est un URI Cloud Storage complet ou une liste d'URI séparés par une virgule. Les caractères génériques sont également acceptés.

Exemples :

La commande suivante permet de charger des données depuis gs://mybucket/mydata.orc en écrasant une table nommée mytable dans l'ensemble de données mydataset.

    bq load \
    --replace \
    --source_format=ORC \
    mydataset.mytable \
    gs://mybucket/mydata.orc

La commande suivante permet de charger les données de gs://mybucket/mydata.orc et d'ajouter des données à la table mytable de mydataset.

    bq load \
    --noreplace \
    --source_format=ORC \
    mydataset.mytable \
    gs://mybucket/mydata.orc

Pour en savoir plus sur l'ajout et l'écrasement de données dans des tables partitionnées à l'aide de l'outil de ligne de commande bq, consultez la section Ajouter ou écraser des données dans une table partitionnée.

API

  1. Créez une tâche de chargement (load) qui pointe vers les données sources dans Cloud Storage.

  2. (Facultatif) Spécifiez votre emplacement dans la propriété location de la section jobReference de la ressource de tâche.

  3. La propriété source URIs doit être complète et respecter le format gs://bucket/object. Vous pouvez inclure plusieurs URI sous la forme d'une liste d'éléments séparés par une virgule. Sachez que les caractères génériques sont également acceptés.

  4. Spécifiez le format de données en définissant la propriété configuration.load.sourceFormat sur ORC.

  5. Spécifiez la préférence d'écriture en définissant la propriété configuration.load.writeDisposition sur WRITE_TRUNCATE ou WRITE_APPEND.

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour C#.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsOrcTruncate
{
    public void LoadTableGcsOrcTruncate(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id",
        string tableId = "your_table_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.orc";
        var dataset = client.GetDataset(datasetId);
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.Orc,
            WriteDisposition = WriteDisposition.WriteTruncate
        };
        // Create and run job
        var loadJob = client.CreateLoadJob(
            sourceUri: gcsURI,
            destination: destinationTableRef,
            // Pass null as the schema because the schema is inferred when
            // loading Orc data
            schema: null, options: jobOptions);
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Go.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importORCTruncate demonstrates loading Apache ORC data from Cloud Storage into a table
// and overwriting/truncating existing data in the table.
func importORCTruncate(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.orc")
	gcsRef.SourceFormat = bigquery.ORC
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	// Default for import jobs is to append data to a table.  WriteTruncate
	// specifies that existing data should instead be replaced/overwritten.
	loader.WriteDisposition = bigquery.WriteTruncate

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.TableId;

// Sample to overwrite the BigQuery table data by loading a ORC file from GCS
public class LoadOrcFromGcsTruncate {

  public static void runLoadOrcFromGcsTruncate() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.orc";
    loadOrcFromGcsTruncate(datasetName, tableName, sourceUri);
  }

  public static void loadOrcFromGcsTruncate(
      String datasetName, String tableName, String sourceUri) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.orc())
              // Set the write disposition to overwrite existing table data
              .setWriteDisposition(JobInfo.WriteDisposition.WRITE_TRUNCATE)
              .build();

      // Load data from a GCS ORC file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone() && job.getStatus().getError() == null) {
        System.out.println("Table is successfully overwritten by ORC file loaded from GCS");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Node.js.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate the clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.orc';

async function loadORCFromGCSTruncate() {
  /**
   * Imports a GCS file into a table and overwrites
   * table data if table already exists.
   */

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'ORC',
    // Set the write disposition to overwrite existing table data.
    writeDisposition: 'WRITE_TRUNCATE',
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour PHP.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId = 'The Google project ID';
// $datasetId = 'The BigQuery dataset ID';
// $tableID = 'The BigQuery table ID';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$table = $bigQuery->dataset($datasetId)->table($tableId);

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.orc';
$loadConfig = $table->loadFromStorage($gcsUri)->sourceFormat('ORC')->writeDisposition('WRITE_TRUNCATE');
$job = $table->runJob($loadConfig);

// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});

// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

Pour remplacer les lignes d'une table existante, définissez la propriété LoadJobConfig.write_disposition sur WRITE_TRUNCATE.
import io

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
)

body = io.BytesIO(b"Washington,WA")
client.load_table_from_file(body, table_id, job_config=job_config).result()
previous_rows = client.get_table(table_id).num_rows
assert previous_rows > 0

job_config = bigquery.LoadJobConfig(
    write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE,
    source_format=bigquery.SourceFormat.ORC,
)

uri = "gs://cloud-samples-data/bigquery/us-states/us-states.orc"
load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Ruby.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

require "google/cloud/bigquery"

def load_table_gcs_orc_truncate dataset_id = "your_dataset_id",
                                table_id   = "your_table_id"

  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.orc"

  load_job = dataset.load_job table_id,
                              gcs_uri,
                              format: "orc",
                              write:  "truncate"
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done! # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table table_id
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Charger des données ORC partitionnées avec Hive

BigQuery accepte le chargement de données ORC partitionnées avec Hive et stockées dans Cloud Storage. Il insère alors les colonnes de partitionnement Hive en tant que colonnes dans la table de destination gérée par BigQuery. Pour en savoir plus, consultez la page Charger des données partitionnées externes.

Conversions ORC

BigQuery convertit les types de données ORC en types de données BigQuery, comme décrit ci-dessous.

Types primitifs

Type de données ORC Type de données BigQuery Remarques
booléen BOOLÉEN
octet INTEGER
short INTEGER
int INTEGER
long INTEGER
float FLOAT
double FLOAT
string STRING UTF-8 uniquement
varchar STRING UTF-8 uniquement
char STRING UTF-8 uniquement
binary BYTES
date DATE Toute tentative de conversion d'une valeur comprise dans les données ORC inférieure à -719162 jours ou supérieure à 2932896 jours renvoie une erreur invalid date value. Si cela vous concerne, contactez l'assistance pour que les valeurs non compatibles soient converties en valeur minimale de 0001-01-01 ou en 9999-12-31 maximale de BigQuery, selon le cas.
timestamp TIMESTAMP

ORC accepte une précision à la nanoseconde, mais BigQuery convertit les valeurs inférieures à la microseconde en microsecondes lors de la lecture des données.

Toute tentative de conversion d'une valeur comprise dans les données ORC inférieure à -719162 jours ou supérieure à 2932896 jours renvoie une erreur invalid date value. Si cela vous concerne, contactez l'assistance pour que les valeurs non compatibles soient converties en valeur minimale de 0001-01-01 ou en 9999-12-31 maximale de BigQuery, selon le cas.

decimal NUMERIC, BIGNUMERIC ou STRING Consultez la section Type décimal.

Type décimal

Les types logiques Decimal peuvent être convertis en types NUMERIC, BIGNUMERIC ou STRING. Le type converti dépend des paramètres de précision et d'évolutivité du type logique decimal et des types cibles décimaux spécifiés. Spécifiez le type de cible décimal comme suit :

Types complexes

Type de données ORC Type de données BigQuery Remarques
struct RECORD
  • Tous les champs sont en mode NULLABLE.
  • L'ordre des champs est ignoré.
  • Le nom d'un champ doit être un nom de colonne valide.
map<K,V> RECORD Un champ map<K,V> ORC est converti en un élément RECORD répété contenant deux champs : une clé du même type de données que K et une valeur du même type de données que V. Ces deux champs sont en mode NULLABLE.
list champs répétés Les listes imbriquées et les listes de cartes ne sont pas acceptées.
union RECORD
  • Lorsqu'une union n'a qu'une variante, elle est convertie en champ NULLABLE.
  • Sinon, elle est convertie en élément RECORD avec une liste de champs en mode NULLABLE. Ces derniers ont des suffixes tels que champ_0, champ_1, etc. Lors de la lecture des données, un seul de ces champs se voit attribuer une valeur.

Noms de colonne

Un nom de colonne peut contenir des lettres (a-z, A-Z), des chiffres (0-9) ou des traits de soulignement (_), et doit commencer par une lettre ou un trait de soulignement. Si vous utilisez des noms de colonnes flexibles, BigQuery vous autorise à commencer un nom de colonne par un chiffre. Soyez prudent lorsque vous commencez des noms de colonnes par un chiffre, car l'utilisation de noms de colonnes flexibles avec l'API BigQuery Storage Read ou l'API BigQuery Storage Write nécessite un traitement particulier. Pour en savoir plus sur la compatibilité des noms de colonnes flexibles, consultez Noms de colonnes flexibles.

Les noms de colonne ne doivent pas comporter plus de 300 caractères. Les noms de colonnes ne peuvent utiliser aucun des préfixes suivants :

  • _TABLE_
  • _FILE_
  • _PARTITION
  • _ROW_TIMESTAMP
  • __ROOT__
  • _COLIDENTIFIER

Les noms de colonnes en double ne sont pas autorisés, même si la casse est différente. Par exemple, la colonne Column1 est considérée comme identique à la colonne column1. Pour en savoir plus sur les règles de dénomination des colonnes, consultez Noms de colonnes dans la documentation de référence GoogleSQL.

Si un nom de table (par exemple, test) est identique à l'un de ses noms de colonne (par exemple, test), l'expression SELECT interprète la colonne test comme un élément STRUCT contenant toutes les autres colonnes de la table. Pour éviter ce conflit, utilisez l'une des méthodes suivantes :

  • Évitez d'utiliser le même nom pour une table et ses colonnes.

  • Attribuez un autre alias à la table. Par exemple, la requête suivante attribue un alias de table t à la table project1.dataset.test :

    SELECT test FROM project1.dataset.test AS t;
    
  • Incluez le nom de la table lorsque vous référencez une colonne. Exemple :

    SELECT test.test FROM project1.dataset.test;
    

Noms de colonne flexibles

Vous disposez d'une plus grande flexibilité dans vos noms de colonnes, y compris d'un accès étendu aux caractères dans d'autres langues que l'anglais, ainsi qu'à d'autres symboles.

Les noms de colonnes flexibles acceptent les caractères suivants :

  • N'importe quelle lettre dans n'importe quelle langue comme représenté par l'expression régulière Unicode \p{L}
  • Tout caractère numérique dans n'importe quelle langue comme représenté par l'expression régulière Unicode \p{N}.
  • Tout caractère de ponctuation du connecteur, y compris les traits de soulignement, comme représenté par l'expression régulière Unicode \p{Pc}.
  • Trait d'union ou tiret comme représenté par l'expression régulière Unicode \p{Pd}.
  • Toute marque destinée à accompagner un autre caractère comme représenté par l'expression régulière Unicode \p{M}. Par exemple, les accents, les tréma ou les cadres de délimitation.
  • Les caractères spéciaux suivants :
    • Esperluette (&) comme représenté par l'expression régulière Unicode \u0026.
    • Signe du pourcentage (%) comme représenté par l'expression régulière Unicode \u0025.
    • Signe "égal à" (=) comme représenté par l'expression régulière Unicode \u003D.
    • Signe plus (+) comme représenté par l'expression régulière Unicode \u002B.
    • Signe deux-points (:) comme représenté par l'expression régulière Unicode \u003A.
    • Apostrophe (') comme représenté par l'expression régulière Unicode \u0027.
    • Signe "inférieur à" (<) comme représenté par l'expression régulière Unicode \u003C.
    • Signe "supérieur à" (>) comme représenté par l'expression régulière Unicode \u003E.
    • Signe numérique (#) comme représenté par l'expression régulière Unicode \u0023.
    • Ligne verticale (|) comme représenté par l'expression régulière Unicode \u007c
    • Whitespace.

Les noms de colonnes flexibles n'acceptent pas les caractères spéciaux suivants :

  • Point d'exclamation (!) comme représenté par l'expression régulière Unicode \u0021.
  • Guillemets (") comme représenté par l'expression régulière Unicode \u0022.
  • Signe dollar ($) comme représenté par l'expression régulière Unicode \u0024.
  • Parenthèse gauche (() comme représenté par l'expression régulière Unicode \u0028
  • Parenthèse droite ()) comme représenté par l'expression régulière Unicode \u0029.
  • Astérisque (*) comme représenté par l'expression régulière Unicode \u002A.
  • Virgule (,) comme représenté par l'expression régulière Unicode \u002C.
  • Point (.) comme représenté par l'expression régulière Unicode \u002E.
  • Barre oblique (/) comme représenté par l'expression régulière Unicode \u002F.
  • Point-virgule (;) comme représenté par l'expression régulière Unicode \u003B.
  • Point d'interrogation (?) comme représenté par l'expression régulière Unicode \u003F.
  • Signe arobase (@) comme représenté par l'expression régulière Unicode \u0040.
  • Crochet gauche ([) comme représenté par l'expression régulière Unicode \u005B.
  • Barre oblique inverse (\) comme représenté par l'expression régulière Unicode \u005C.
  • Crochet droit (]) comme représenté par l'expression régulière Unicode \u005D.
  • Accent circonflexe (^) comme représenté par l'expression régulière Unicode \u005E.
  • Accent grave (`) comme représenté par l'expression régulière Unicode \u0060.
  • Accolade gauche {{) comme représenté par l'expression régulière Unicode \u007B
  • Accolade droite (}) comme représenté par l'expression régulière Unicode \u007D
  • Tilde (~) comme représenté par l'expression régulière Unicode \u007E.

Pour obtenir des consignes supplémentaires, consultez la section Noms de colonne.

Les caractères de colonne étendus sont compatibles avec l'API BigQuery Storage Read et l'API BigQuery Storage Write. Pour utiliser la liste étendue des caractères Unicode avec l'API BigQuery Storage Read, vous devez définir une option. Vous pouvez utiliser l'attribut displayName pour récupérer le nom de la colonne. L'exemple suivant montre comment définir une option avec le client Python :

from google.cloud.bigquery_storage import types
requested_session = types.ReadSession()

#set avro serialization options for flexible column.
options = types.AvroSerializationOptions()
options.enable_display_name_attribute = True
requested_session.read_options.avro_serialization_options = options

Pour utiliser la liste étendue de caractères Unicode avec l'API BigQuery Storage Write, vous devez fournir le schéma avec la notation column_name, sauf si vous utilisez l'objet rédacteur JsonStreamWriter. L'exemple suivant montre comment fournir le schéma :

syntax = "proto2";
package mypackage;
// Source protos located in github.com/googleapis/googleapis
import "google/cloud/bigquery/storage/v1/annotations.proto";

message FlexibleSchema {
  optional string item_name_column = 1
  [(.google.cloud.bigquery.storage.v1.column_name) = "name-"];
  optional string item_description_column = 2
  [(.google.cloud.bigquery.storage.v1.column_name) = "description-"];
}

Dans cet exemple, item_name_column et item_description_column sont des noms d'espaces réservés qui doivent être conformes à la convention de dénomination du tampon de protocole. Notez que les annotations column_name ont toujours priorité sur les noms d'espaces réservés.

Limites

Les noms de colonnes flexibles ne sont pas compatibles avec les tables externes.

NULL valeurs

Notez que, pour les tâches de chargement, BigQuery ignore les éléments NULL du type composé list. En effet, dans le cas contraire, ceux-ci seraient traduits en éléments NULLARRAY, qui ne peuvent pas être conservés dans une table (consultez la page Types de données pour plus de détails).

Pour en savoir plus sur les types de données ORC, consultez le document Apache ORC™ Specification v1.