2BigQuery ML은 이 모델의 가중치를 검색하는 함수를 제공하지 않습니다. 모델의 가중치를 보려면 BigQuery ML에서 Cloud Storage로 모델을 내보내고 XGBoost 라이브러리 또는 TensorFlow 라이브러리를 사용하여 트리 모델의 트리 구조 또는 신경망의 그래프 구조를 시각화할 수 있습니다. 자세한 내용은 EXPORT MODEL 및 온라인 예측을 위해 BigQuery ML 모델 내보내기를 참고하세요.
모델 사용 사용자 여정
다음 표에서는 모델을 평가하고, 설명하고, 모델에서 예측을 얻는 데 사용할 수 있는 문과 함수를 설명합니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-09(UTC)"],[],[],null,["# End-to-end user journey for each model\n======================================\n\nBigQuery ML supports a variety of machine learning models and a complete machine\nlearning flow for each model, such as feature preprocessing, model creation,\nhyperparameter tuning, inference, evaluation, and model export. The machine\nlearning flow for the models are split into the following two tables:\n\n- [Model creation phase](#model_creation_phase)\n- [Model use phase](#model_use_phase)\n\n\u003cbr /\u003e\n\nModel creation phase\n--------------------\n\n^1^See [TRANSFORM\nclause for the feature engineering](/bigquery/docs/bigqueryml-transform) tutorial. For more information about\nthe preprocessing functions, see the [BQML - Feature Engineering Functions tutorial](https://github.com/GoogleCloudPlatform/bigquery-ml-utils/blob/master/notebooks/bqml-preprocessing-functions.ipynb).\n\n^2^See [use\nhyperparameter tuning to improve model performance](/bigquery/docs/hyperparameter-tuning-tutorial) tutorial.\n\n^3^Automatic feature engineering and hyperparameter tuning are\nembedded in the AutoML model training by default.\n\n^4^The auto.ARIMA algorithm performs hyperparameter tuning for the\ntrend module. Hyperparameter tuning is not supported for the entire modeling\npipeline. See the\n[modeling pipeline](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-time-series#time_series_modeling_pipeline) for more details.\n\n^5^BigQuery ML doesn't support functions that retrieve the weights for boosted trees, random forest, DNNs, Wide-and-deep, Autoencoder, or AutoML models. To see the weights of those models, you can export an existing model from BigQuery ML to Cloud Storage and then use the XGBoost library or the TensorFlow library to visualize the tree structure for the tree models or the graph structure for the neural networks. For more information, see the [EXPORT MODEL documentation](/bigquery/docs/exporting-models) and the [EXPORT MODEL tutorial](/bigquery/docs/export-model-tutorial).\n\n^6^Uses a\n[Vertex AI foundation model](/vertex-ai/docs/generative-ai/learn/models#foundation_models)\nor customizes it by using supervised tuning.\n\n^7^This is not a typical ML model but rather an artifact that\ntransforms raw data into features.\n\nModel use phase\n---------------\n\n^1^`ml.confusion_matrix` is only applicable to classification models.\n\n^2^`ml.roc_curve` is only applicable to binary classification models.\n\n^3^`ml.explain_predict` is an extended version of `ml.predict`.\nFor more information, see [Explainable AI overview](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-xai-overview).\nTo learn how `ml.explain_predict` is used, see [regression tutorial](/bigquery/docs/linear-regression-tutorial#explain_the_prediction_results) and [classification tutorial](/bigquery/docs/logistic-regression-prediction#explain_the_prediction_results).\n\n^4^For the difference between `ml.global_explain` and\n`ml.feature_importance`, see\n[Explainable AI overview](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-xai-overview).\n\n^5^See the [Export a\nBigQuery ML model for online prediction](/bigquery/docs/export-model-tutorial) tutorial. For more\ninformation about online serving, see the\n[BQML - Create Model with Inline Transpose tutorial](https://github.com/GoogleCloudPlatform/bigquery-ml-utils/blob/master/notebooks/bqml-feature-engineering.ipynb).\n\n^6^For `ARIMA_PLUS` or `ARIMA_PLUS_XREG` models, `ml.evaluate` can take new data as input to compute forecasting metrics such as mean absolute percentage error (MAPE). In the absence of new data, `ml.evaluate` has an extended version `ml.arima_evaluate` which outputs different evaluation information.\n\n^7^`ml.explain_forecast` is an extended version of `ml.forecast`.\nFor more information, see [Explainable AI overview](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-xai-overview).\nTo learn how `ml.explain_forecast` is used, see the visualize results steps of the [single time series forecasting](/bigquery/docs/arima-single-time-series-forecasting-tutorial#explain_the_forecasting_results) and [multiple time series forecasting](/bigquery/docs/arima-multiple-time-series-forecasting-tutorial#explain_the_forecasting_results) tutorials.\n\n^8^`ml.advanced_weights` is an extended version of `ml.weights`,\nsee [ml.advanced_weights](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-advanced-weights)\nfor more details.\n\n^9^Uses a\n[Vertex AI foundation model](/vertex-ai/docs/generative-ai/learn/models#foundation_models)\nor customizes it by using supervised tuning.\n\n^10^This is not a typical ML model but rather an artifact that\ntransforms raw data into features.\n\n^11^Not supported for all Vertex AI LLMs. For more information,\nsee\n[ml.evaluate](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate)."]]