Crea e configura una connessione a una risorsa Cloud

In qualità di amministratore BigQuery, puoi creare una connessione di risorse Cloud che consenta agli analisti dei dati di svolgere le seguenti attività:

Per saperne di più sulle connessioni, vedi Introduzione alle connessioni.

Prima di iniziare

Considerazione della posizione

Quando utilizzi Cloud Storage per archiviare i file di dati, ti consigliamo di utilizzare bucket Cloud Storage a singola regione o a doppia regione per ottenere prestazioni ottimali, non bucket multiregionali.

Crea connessioni risorsa Cloud

BigLake utilizza una connessione per accedere a Cloud Storage. Puoi utilizzare questa connessione con una singola tabella o un gruppo di tabelle.

Puoi saltare questo passaggio se hai configurato una connessione predefinita o se disponi del ruolo Amministratore BigQuery.

Crea una connessione a una risorsa Cloud da utilizzare per il modello remoto e recupera il account di servizio della connessione. Crea la connessione nella stessa posizione del set di dati che hai creato nel passaggio precedente.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Nel riquadro Explorer, fai clic su Aggiungi dati:

    L'elemento UI Aggiungi dati.

    Si apre la finestra di dialogo Aggiungi dati.

  3. Nel riquadro Filtra per, seleziona Applicazioni aziendali nella sezione Tipo di origine dati.

    In alternativa, nel campo Cerca origini dati, puoi inserire Vertex AI.

  4. Nella sezione Origini dati in evidenza, fai clic su Vertex AI.

  5. Fai clic sulla scheda della soluzione Vertex AI Models: BigQuery Federation.

  6. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  7. Nel campo ID connessione, inserisci un nome per la connessione.

  8. Fai clic su Crea connessione.

  9. Fai clic su Vai alla connessione.

  10. Nel riquadro Informazioni sulla connessione, copia l'ID del account di servizio da utilizzare in un passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: la tua regione di connessione
    • PROJECT_ID: il tuo ID progetto Google Cloud
    • CONNECTION_ID: un ID per la tua connessione

    Quando crei una risorsa di connessione, BigQuery crea un account di serviziot di sistema univoco e lo associa alla connessione.

    Risoluzione dei problemi: se viene visualizzato il seguente errore di connessione, aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio da utilizzare in un passaggio successivo:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Utilizza la risorsa google_bigquery_connection.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

L'esempio seguente crea una connessione di risorsa Cloud denominata my_cloud_resource_connection nella regione US:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

Per applicare la configurazione di Terraform in un progetto Google Cloud , completa i passaggi nelle sezioni seguenti.

Prepara Cloud Shell

  1. Avvia Cloud Shell.
  2. Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.

    Devi eseguire questo comando una sola volta per progetto e puoi eseguirlo in qualsiasi directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.

Prepara la directory

Ogni file di configurazione di Terraform deve avere la propria directory (chiamata anche modulo radice).

  1. In Cloud Shell, crea una directory e un nuovo file al suo interno. Il nome file deve avere l'estensione .tf, ad esempio main.tf. In questo tutorial, il file viene denominato main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. Se stai seguendo un tutorial, puoi copiare il codice campione in ogni sezione o passaggio.

    Copia il codice campione nel main.tf appena creato.

    (Facoltativo) Copia il codice da GitHub. Questa operazione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.

  3. Rivedi e modifica i parametri di esempio da applicare al tuo ambiente.
  4. Salva le modifiche.
  5. Inizializza Terraform. Devi effettuare questa operazione una sola volta per directory.
    terraform init

    (Facoltativo) Per utilizzare l'ultima versione del provider Google, includi l'opzione -upgrade:

    terraform init -upgrade

Applica le modifiche

  1. Rivedi la configurazione e verifica che le risorse che Terraform creerà o aggiornerà corrispondano alle tue aspettative:
    terraform plan

    Apporta le correzioni necessarie alla configurazione.

  2. Applica la configurazione di Terraform eseguendo il comando seguente e inserendo yes al prompt:
    terraform apply

    Attendi che Terraform visualizzi il messaggio "Apply complete!" (Applicazione completata).

  3. Apri il tuo Google Cloud progetto per visualizzare i risultati. Nella console Google Cloud , vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.

Concedi l'accesso al service account

Per creare funzioni remote, devi concedere i ruoli richiesti a Cloud Run Functions o Cloud Run.

Per connetterti a Cloud Storage, devi concedere alla nuova connessione l'accesso in sola lettura a Cloud Storage in modo che BigQuery possa accedere ai file per conto degli utenti.

Seleziona una delle seguenti opzioni:

Console

Ti consigliamo di concedere al account di servizio della risorsa di connessione il ruolo IAM Storage Object Viewer (roles/storage.objectViewer), che consente aaccount di serviziont di accedere ai bucket Cloud Storage.

  1. Vai alla pagina IAM e amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Aggiungi.

    Si apre la finestra di dialogo Aggiungi entità.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.

  4. Nel campo Seleziona un ruolo, seleziona Cloud Storage e poi Visualizzatore oggetti Storage.

  5. Fai clic su Salva.

gcloud

Utilizza il comando gcloud storage buckets add-iam-policy-binding:

gcloud storage buckets add-iam-policy-binding gs://BUCKET \
--member=serviceAccount:MEMBER \
--role=roles/storage.objectViewer

Sostituisci quanto segue:

  • BUCKET: il nome del bucket di archiviazione.
  • MEMBER: l'ID account di servizio che hai copiato in precedenza.

Per saperne di più, consulta Aggiungere un principal a un criterio a livello di bucket.

Terraform

Utilizza la risorsa google_bigquery_connection.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

L'esempio seguente concede l'accesso al ruolo IAM al service account della connessione alla risorsa cloud:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

## This grants IAM role access to the service account of the connection created in the previous step.
resource "google_project_iam_member" "connectionPermissionGrant" {
  project = data.google_project.default.project_id
  role    = "roles/storage.objectViewer"
  member  = "serviceAccount:${google_bigquery_connection.default.cloud_resource[0].service_account_id}"
}

Per applicare la configurazione di Terraform in un progetto Google Cloud , completa i passaggi nelle sezioni seguenti.

Prepara Cloud Shell

  1. Avvia Cloud Shell.
  2. Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.

    Devi eseguire questo comando una sola volta per progetto e puoi eseguirlo in qualsiasi directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.

Prepara la directory

Ogni file di configurazione di Terraform deve avere la propria directory (chiamata anche modulo radice).

  1. In Cloud Shell, crea una directory e un nuovo file al suo interno. Il nome file deve avere l'estensione .tf, ad esempio main.tf. In questo tutorial, il file viene denominato main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. Se stai seguendo un tutorial, puoi copiare il codice campione in ogni sezione o passaggio.

    Copia il codice campione nel main.tf appena creato.

    (Facoltativo) Copia il codice da GitHub. Questa operazione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.

  3. Rivedi e modifica i parametri di esempio da applicare al tuo ambiente.
  4. Salva le modifiche.
  5. Inizializza Terraform. Devi effettuare questa operazione una sola volta per directory.
    terraform init

    (Facoltativo) Per utilizzare l'ultima versione del provider Google, includi l'opzione -upgrade:

    terraform init -upgrade

Applica le modifiche

  1. Rivedi la configurazione e verifica che le risorse che Terraform creerà o aggiornerà corrispondano alle tue aspettative:
    terraform plan

    Apporta le correzioni necessarie alla configurazione.

  2. Applica la configurazione di Terraform eseguendo il comando seguente e inserendo yes al prompt:
    terraform apply

    Attendi che Terraform visualizzi il messaggio "Apply complete!" (Applicazione completata).

  3. Apri il tuo Google Cloud progetto per visualizzare i risultati. Nella console Google Cloud , vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.

Condividere le connessioni con gli utenti

Puoi concedere i seguenti ruoli per consentire agli utenti di eseguire query sui dati e gestire le connessioni:

  • roles/bigquery.connectionUser: consente agli utenti di utilizzare le connessioni per connettersi a origini dati esterne ed eseguire query.

  • roles/bigquery.connectionAdmin: consente agli utenti di gestire le connessioni.

Per saperne di più sui ruoli e sulle autorizzazioni IAM in BigQuery, consulta Ruoli e autorizzazioni predefiniti.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

    Le connessioni sono elencate nel tuo progetto, in un gruppo chiamato Connessioni esterne.

  2. Nel riquadro Explorer, fai clic sul nome del progetto > Connessioni esterne > connessione.

  3. Nel riquadro Dettagli, fai clic su Condividi per condividere una connessione. Quindi:

    1. Nella finestra di dialogo Autorizzazioni di connessione, condividi la connessione con altre entità aggiungendo o modificando le entità.

    2. Fai clic su Salva.

bq

Non puoi condividere una connessione con lo strumento a riga di comando bq. Per condividere una connessione, utilizza la console Google Cloud o il metodo dell'API BigQuery Connections per condividere una connessione.

API

Utilizza il metodo projects.locations.connections.setIAM nella sezione di riferimento dell'API REST BigQuery Connections e fornisci un'istanza della risorsa policy.

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Java.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

import com.google.api.resourcenames.ResourceName;
import com.google.cloud.bigquery.connection.v1.ConnectionName;
import com.google.cloud.bigqueryconnection.v1.ConnectionServiceClient;
import com.google.iam.v1.Binding;
import com.google.iam.v1.Policy;
import com.google.iam.v1.SetIamPolicyRequest;
import java.io.IOException;

// Sample to share connections
public class ShareConnection {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String location = "MY_LOCATION";
    String connectionId = "MY_CONNECTION_ID";
    shareConnection(projectId, location, connectionId);
  }

  static void shareConnection(String projectId, String location, String connectionId)
      throws IOException {
    try (ConnectionServiceClient client = ConnectionServiceClient.create()) {
      ResourceName resource = ConnectionName.of(projectId, location, connectionId);
      Binding binding =
          Binding.newBuilder()
              .addMembers("group:example-analyst-group@google.com")
              .setRole("roles/bigquery.connectionUser")
              .build();
      Policy policy = Policy.newBuilder().addBindings(binding).build();
      SetIamPolicyRequest request =
          SetIamPolicyRequest.newBuilder()
              .setResource(resource.toString())
              .setPolicy(policy)
              .build();
      client.setIamPolicy(request);
      System.out.println("Connection shared successfully");
    }
  }
}

Passaggi successivi