모델 학습

준비된 데이터세트로 학습시켜 커스텀 모델을 만듭니다. AutoML Vision API는 데이터 세트의 이미지를 이용해 모델을 학습시키고, 테스트하고, 모델의 성능을 평가합니다. 결과를 검토하고 필요하면 학습 데이터세트를 조정하며 향상된 데이터세트를 사용하여 새 모델을 학습시킵니다.

모델 학습이 완료되기까지 몇 시간 정도 걸릴 수 있습니다. AutoML Vision API를 사용하면 학습의 상태를 확인할 수 있습니다.

모델 학습

경계 상자 및 라벨로 주석 처리된 학습 이미지가 다수 포함된 데이터세트가 있으면 커스텀 모델을 만들고 학습시킬 준비가 된 것입니다.

웹 UI

  1. AutoML Vision 객체 감지 UI를 엽니다.

    데이터세트 페이지에는 현재 프로젝트에 사용 가능한 데이터세트가 표시됩니다.

    데이터세트 페이지 나열

  2. 커스텀 모델 학습에 사용할 데이터세트를 선택합니다.

  3. 데이터세트가 준비되면 학습 탭과 새 모델 학습 버튼을 선택합니다.

    그러면 학습 옵션이 포함된 '새 모델 학습' 측면 창이 열립니다.

  4. 모델 정의 섹션에서 모델 이름을 지정하거나 기본 이름을 그대로 사용합니다. 아직 지정되지 않은 경우 클라우드 호스팅을 모델 유형으로 선택합니다. Edge 모델을 학습하도록 선택한 후 계속을 선택합니다.

    클라우드 모델 학습 라디오 버튼 이미지

  5. 다음 모델 최적화 옵션 세션에서 원하는 최적화 기준( 더 높은 정확성 또는 더 빠른 예측)을 선택합니다. 최적화 사양을 선택한 후 계속을 선택합니다.

    최적의 균형 라디오 버튼 이미지

  6. 다음 노드 시간 예산 설정 섹션에서 원하는 노드 예산을 지정합니다.

    기본적으로 대부분의 데이터세트는 24 노드 시간이면 모델을 학습하는 데 충분합니다. 이 권장 값은 모델을 완전히 수렴하기 위한 예상 값입니다. 하지만 다른 값을 선택할 수도 있습니다. 객체 감지의 최소 노드 시간은 20입니다. 이미지 분류의 경우 이 최소 시간은 8입니다.

    이 섹션에서는 학습 후 노드 1개에 모델 배포를 선택하여 학습 후에 모델 자동 배포를 선택할 수도 있습니다. 그렇지 않으면 학습이 완료된 후에 모델을 수동으로 배포해야 합니다.

    노드 예산 설정 섹션

  7. 학습 시작을 선택하여 모델 학습을 시작합니다.

모델 학습이 완료되기까지 몇 시간 정도 걸릴 수 있습니다. 모델 학습이 끝나면 Google Cloud Platform 프로젝트에 사용된 이메일 주소로 메시지가 수신됩니다.

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • project-id: GCP 프로젝트 ID입니다.
  • dataset-id: 데이터 세트의 ID입니다. ID는 데이터 세트 이름의 마지막 요소입니다. 예를 들면 다음과 같습니다.
    • 데이터 세트 이름: projects/project-id/locations/location-id/datasets/3104518874390609379
    • 데이터 세트 ID: 3104518874390609379
  • display-name: 선택한 문자열 표시 이름입니다.

특정 필드 고려사항:

  • imageObjectDetectionModelMetadata.modelType - 모델을 최적화하는 두 가지 옵션 중 하나를 나타냅니다.
    • cloud-low-latency-1 - 지연 시간을 기준으로 학습을 최적화합니다.
    • cloud-high-accuracy-1 - 정확도를 기준으로 학습을 최적화합니다.
  • imageObjectDetectionModelMetadata.trainBudgetMilliNodeHours - 이 모델을 만들기 위한 학습 예산으로, 밀리 노드 시간으로 표현됩니다. 이 필드에서 1,000 값은 1 노드 시간을 의미합니다. 실제 trainCostMilliNodeHours는 이 값보다 작거나 같습니다. 추가적인 모델 학습이 더 이상 모델을 향상시키지 못하는 경우, 전체 예산을 사용하지 않고 중지되며 stopReasonMODEL_CONVERGED가 됩니다.

    참고: node_hour = actual_hour * number_of_nodes_involved.

    모델 유형 cloud-high-accuracy-1(기본값) 및 cloud-low-latency-1의 경우에는 학습 예산이 20,000에서 2,000,000밀리 노드 시간 사이여야 합니다(20,000과 2,000,000 포함). 기본값은 실제 경과 시간으로 1일을 나타내는 216,000입니다.

HTTP 메서드 및 URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

JSON 요청 본문:

{
  "displayName": "display-name",
  "datasetId": "dataset-id",
  "imageObjectDetectionModelMetadata": {
    "modelType": "cloud-low-latency-1",
    "trainBudgetMilliNodeHours": "216000"
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 작업 ID(이 경우 IOD3074819451447675546)를 사용하여 작업 상태를 가져올 수 있습니다. 예시를 보려면 장기 실행 작업 다루기를 참조하세요.

{
  "name": "projects/project-id/locations/us-central1/operations/IOD3074819451447675546",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-07-26T21:10:18.338846Z",
    "updateTime": "2019-07-26T21:10:18.338846Z",
    "createModelDetails": {}
  }
}

Go

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// visionObjectDetectionCreateModel creates a model for image object detection.
func visionObjectDetectionCreateModel(w io.Writer, projectID string, location string, datasetID string, modelName string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "IOD123456789..."
	// modelName := "model_display_name"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.CreateModelRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		Model: &automlpb.Model{
			DisplayName: modelName,
			DatasetId:   datasetID,
			ModelMetadata: &automlpb.Model_ImageObjectDetectionModelMetadata{
				ImageObjectDetectionModelMetadata: &automlpb.ImageObjectDetectionModelMetadata{},
			},
		},
	}

	op, err := client.CreateModel(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())
	fmt.Fprintf(w, "Training started...\n")

	return nil
}

자바

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ImageObjectDetectionModelMetadata;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.OperationMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionObjectDetectionCreateModel {

  static void createModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String displayName = "YOUR_DATASET_NAME";
    createModel(projectId, datasetId, displayName);
  }

  // Create a model
  static void createModel(String projectId, String datasetId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      // Set model metadata.
      ImageObjectDetectionModelMetadata metadata =
          ImageObjectDetectionModelMetadata.newBuilder().build();
      Model model =
          Model.newBuilder()
              .setDisplayName(displayName)
              .setDatasetId(datasetId)
              .setImageObjectDetectionModelMetadata(metadata)
              .build();

      // Create a model with the model metadata in the region.
      OperationFuture<Model, OperationMetadata> future =
          client.createModelAsync(projectLocation, model);
      // OperationFuture.get() will block until the model is created, which may take several hours.
      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Training operation name: %s\n", future.getInitialFuture().get().getName());
      System.out.println("Training started...");
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const dataset_id = 'YOUR_DATASET_ID';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function createModel() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    model: {
      displayName: displayName,
      datasetId: datasetId,
      imageObjectDetectionModelMetadata: {},
    },
  };

  // Don't wait for the LRO
  const [operation] = await client.createModel(request);
  console.log(`Training started... ${operation}`);
  console.log(`Training operation name: ${operation.name}`);
}

createModel();

Python

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# display_name = "your_models_display_name"

client = automl.AutoMlClient()

# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# Leave model unset to use the default base model provided by Google
# train_budget_milli_node_hours: The actual train_cost will be equal or
# less than this value.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageobjectdetectionmodelmetadata
metadata = automl.ImageObjectDetectionModelMetadata(
    train_budget_milli_node_hours=24000
)
model = automl.Model(
    display_name=display_name,
    dataset_id=dataset_id,
    image_object_detection_model_metadata=metadata,
)

# Create a model with the model metadata in the region.
response = client.create_model(parent=project_location, model=model)

print("Training operation name: {}".format(response.operation.name))
print("Training started...")

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

작업 나열

다음 코드 샘플을 사용하여 프로젝트의 작업을 나열하고 결과를 필터링합니다.

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • project-id: GCP 프로젝트 ID입니다.

HTTP 메서드 및 URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

다음 명령어를 실행합니다.

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations"

PowerShell

다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations" | Select-Object -Expand Content

표시되는 결과는 요청한 작업에 따라 다릅니다.

선택한 쿼리 매개변수(operationId, done, worksOn)를 사용하여 반환되는 작업을 필터링할 수도 있습니다. 예를 들어 실행이 완료된 작업 목록을 반환하려면 다음과 같이 URL을 수정하세요.

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations?filter="done=true"

Go

이 샘플을 사용해 보기 전에 API 및 참조 > 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"google.golang.org/api/iterator"
	"google.golang.org/genproto/googleapis/longrunning"
)

// listOperationStatus lists existing operations' status.
func listOperationStatus(w io.Writer, projectID string, location string) error {
	// projectID := "my-project-id"
	// location := "us-central1"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &longrunning.ListOperationsRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
	}

	it := client.LROClient.ListOperations(ctx, req)

	// Iterate over all results
	for {
		op, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("ListOperations.Next: %v", err)
		}

		fmt.Fprintf(w, "Name: %v\n", op.GetName())
		fmt.Fprintf(w, "Operation details:\n")
		fmt.Fprintf(w, "%v", op)
	}

	return nil
}

자바

이 샘플을 사용해 보기 전에 API 및 참조 > 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.LocationName;
import com.google.longrunning.ListOperationsRequest;
import com.google.longrunning.Operation;
import java.io.IOException;

class ListOperationStatus {

  static void listOperationStatus() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listOperationStatus(projectId);
  }

  // Get the status of an operation
  static void listOperationStatus(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list operations request.
      ListOperationsRequest listrequest =
          ListOperationsRequest.newBuilder().setName(projectLocation.toString()).build();

      // List all the operations names available in the region by applying filter.
      for (Operation operation :
          client.getOperationsClient().listOperations(listrequest).iterateAll()) {
        System.out.println("Operation details:");
        System.out.format("\tName: %s\n", operation.getName());
        System.out.format("\tMetadata Type Url: %s\n", operation.getMetadata().getTypeUrl());
        System.out.format("\tDone: %s\n", operation.getDone());
        if (operation.hasResponse()) {
          System.out.format("\tResponse Type Url: %s\n", operation.getResponse().getTypeUrl());
        }
        if (operation.hasError()) {
          System.out.println("\tResponse:");
          System.out.format("\t\tError code: %s\n", operation.getError().getCode());
          System.out.format("\t\tError message: %s\n\n", operation.getError().getMessage());
        }
      }
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 API 및 참조 > 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listOperationStatus() {
  // Construct request
  const request = {
    name: client.locationPath(projectId, location),
    filter: `worksOn=projects/${projectId}/locations/${location}/models/*`,
  };

  const [response] = await client.operationsClient.listOperations(request);

  console.log('List of operation status:');
  for (const operation of response) {
    console.log(`Name: ${operation.name}`);
    console.log('Operation details:');
    console.log(`${operation}`);
  }
}

listOperationStatus();

Python

이 샘플을 사용해 보기 전에 API 및 참조 > 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# List all the operations names available in the region.
response = client._transport.operations_client.list_operations(
    name=project_location, filter_="", timeout=5
)

print("List of operations:")
for operation in response:
    print("Name: {}".format(operation.name))
    print("Operation details:")
    print(operation)

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

장기 실행 작업 다루기

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • project-id: GCP 프로젝트 ID입니다.
  • operation-id: 작업의 ID입니다. ID는 작업 이름의 마지막 요소입니다. 예를 들면 다음과 같습니다.
    • 작업 이름: projects/project-id/locations/location-id/operations/IOD5281059901324392598
    • 작업 ID: IOD5281059901324392598

HTTP 메서드 및 URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

다음 명령어를 실행합니다.

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id"

PowerShell

다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id" | Select-Object -Expand Content
가져오기 작업이 완료되면 다음과 유사한 출력이 표시됩니다.
{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2018-10-29T15:56:29.176485Z",
    "updateTime": "2018-10-29T16:10:41.326614Z",
    "importDataDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

모델 만들기 작업이 완료되면 다음과 유사한 출력이 표시됩니다.

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-07-22T18:35:06.881193Z",
    "updateTime": "2019-07-22T19:58:44.972235Z",
    "createModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.Model",
    "name": "projects/project-id/locations/us-central1/models/model-id"
  }
}

Go

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// getOperationStatus gets an operation's status.
func getOperationStatus(w io.Writer, projectID string, location string, datasetID string, modelName string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "ICN123456789..."
	// modelName := "model_display_name"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.CreateModelRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		Model: &automlpb.Model{
			DisplayName: modelName,
			DatasetId:   datasetID,
			ModelMetadata: &automlpb.Model_ImageClassificationModelMetadata{
				ImageClassificationModelMetadata: &automlpb.ImageClassificationModelMetadata{
					TrainBudgetMilliNodeHours: 1000, // 1000 milli-node hours are 1 hour
				},
			},
		},
	}

	op, err := client.CreateModel(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Name: %v\n", op.Name())

	// Wait for the longrunning operation complete.
	resp, err := op.Wait(ctx)
	if err != nil && !op.Done() {
		fmt.Println("failed to fetch operation status", err)
		return err
	}
	if err != nil && op.Done() {
		fmt.Println("operation completed with error", err)
		return err
	}
	fmt.Fprintf(w, "Response: %v\n", resp)

	return nil
}

자바

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.longrunning.Operation;
import java.io.IOException;

class GetOperationStatus {

  static void getOperationStatus() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String operationFullId = "projects/[projectId]/locations/us-central1/operations/[operationId]";
    getOperationStatus(operationFullId);
  }

  // Get the status of an operation
  static void getOperationStatus(String operationFullId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the latest state of a long-running operation.
      Operation operation = client.getOperationsClient().getOperation(operationFullId);

      // Display operation details.
      System.out.println("Operation details:");
      System.out.format("\tName: %s\n", operation.getName());
      System.out.format("\tMetadata Type Url: %s\n", operation.getMetadata().getTypeUrl());
      System.out.format("\tDone: %s\n", operation.getDone());
      if (operation.hasResponse()) {
        System.out.format("\tResponse Type Url: %s\n", operation.getResponse().getTypeUrl());
      }
      if (operation.hasError()) {
        System.out.println("\tResponse:");
        System.out.format("\t\tError code: %s\n", operation.getError().getCode());
        System.out.format("\t\tError message: %s\n", operation.getError().getMessage());
      }
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const operationId = 'YOUR_OPERATION_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getOperationStatus() {
  // Construct request
  const request = {
    name: `projects/${projectId}/locations/${location}/operations/${operationId}`,
  };

  const [response] = await client.operationsClient.getOperation(request);

  console.log(`Name: ${response.name}`);
  console.log('Operation details:');
  console.log(`${response}`);
}

getOperationStatus();

Python

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# operation_full_id = \
#     "projects/[projectId]/locations/us-central1/operations/[operationId]"

client = automl.AutoMlClient()
# Get the latest state of a long-running operation.
response = client._transport.operations_client.get_operation(operation_full_id)

print("Name: {}".format(response.name))
print("Operation details:")
print(response)

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

작업 취소

작업 ID를 사용해 가져오기 또는 학습 작업을 취소할 수 있습니다.

REST 및 명령줄

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • project-id: GCP 프로젝트 ID입니다.
  • operation-id: 작업의 ID입니다. ID는 작업 이름의 마지막 요소입니다. 예를 들면 다음과 같습니다.
    • 작업 이름: projects/project-id/locations/location-id/operations/IOD5281059901324392598
    • 작업 ID: IOD5281059901324392598

HTTP 메서드 및 URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id:cancel

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id:cancel"

PowerShell

다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id:cancel" | Select-Object -Expand Content
요청에 성공하면 빈 JSON 객체가 반환됩니다.
{}

모델 정보 가져오기

다음 코드 샘플을 사용하여 특정 학습된 모델에 대한 정보를 가져옵니다. 이 요청에서 반환된 정보를 사용하여 모드를 수정하거나 예측 요청을 보낼 수 있습니다.

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • project-id: GCP 프로젝트 ID입니다.
  • model-id: 모델을 만들 때의 응답에서 모델의 ID입니다. ID는 모델 이름의 마지막 요소입니다. 예를 들면 다음과 같습니다.
    • 모델 이름: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • 모델 ID: IOD4412217016962778756

HTTP 메서드 및 URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

다음 명령어를 실행합니다.

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id"

PowerShell

다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 표시됩니다.



    {
  "name": "projects/project-id/locations/us-central1/models/model-id",
  "displayName": "display-name",
  "datasetId": "dataset-id",
  "createTime": "2019-07-26T21:10:18.338846Z",
  "deploymentState": "UNDEPLOYED",
  "updateTime": "2019-07-26T22:28:57.464076Z",
  "imageObjectDetectionModelMetadata": {
    "modelType": "cloud-low-latency-1",
    "nodeQps": 1.2987012987012987,
    "stopReason": "MODEL_CONVERGED",
    "trainBudgetMilliNodeHours": "216000",
    "trainCostMilliNodeHours": "8230"
  }
}

Go

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// getModel gets a model.
func getModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.GetModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	model, err := client.GetModel(ctx, req)
	if err != nil {
		return fmt.Errorf("GetModel: %v", err)
	}

	// Retrieve deployment state.
	deploymentState := "undeployed"
	if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
		deploymentState = "deployed"
	}

	// Display the model information.
	fmt.Fprintf(w, "Model name: %v\n", model.GetName())
	fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
	fmt.Fprintf(w, "Model create time:\n")
	fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
	fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
	fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)

	return nil
}

자바

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.ModelName;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s\n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s\n", retrievedModelId);
      System.out.format("Model display name: %s\n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s\n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s\n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s\n", model.getDeploymentState());
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

Python

이 샘플을 사용해 보기 전에 클라이언트 라이브러리 페이지에서 언어 설정 안내를 따르세요.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(name=model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time: {}".format(model.create_time))
print("Model deployment state: {}".format(deployment_state))

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 AutoML Vision 객체 감지 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 AutoML Vision 객체 감지 참조 문서를 참조하세요.