Hello 動画データ: プロジェクトと環境を設定する

Vertex AI SDK for Python を使用する場合は、クライアントを初期化するサービス アカウントに Vertex AI サービス エージェントroles/aiplatform.serviceAgent)IAM ロールが割り当てられていることを確認します。

このチュートリアルには複数のページが含まれます。

  1. プロジェクトの設定

  2. 動画分類データセットの作成

  3. AutoML 動画分類モデルのトレーニング

  4. バッチ予測に使用するモデルのデプロイ

  5. プロジェクトのクリーンアップ

各ページは、前のページのチュートリアルの手順をすでに行っていることを前提としています。

プロジェクトと環境を設定する

このチュートリアルでは、 Google Cloud コンソールを使用して、 Google Cloudを操作します。Vertex AI の機能を使用する前に、次の手順を行ってください。

  1. In the Google Cloud console, go to the project selector page.

    Go to project selector

  2. Select or create a Google Cloud project.

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Cloud Shell を開きます。Cloud Shell は、 Google Cloud のインタラクティブなシェル環境であり、ウェブブラウザからプロジェクトやリソースを管理できます。
  5. Cloud Shell に移動
  6. Cloud Shell で、現在のプロジェクトを Google Cloudプロジェクト ID に設定し、projectid シェル変数に格納します。
      gcloud config set project PROJECT_ID &&
      projectid=PROJECT_ID &&
      echo $projectid
    PROJECT_ID は、実際のプロジェクト ID に置き換えます。プロジェクト ID は、 Google Cloud のコンソールで確認できます。詳細については、プロジェクト ID を確認するをご覧ください。
  7. Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs:

    gcloud services enable iam.googleapis.com  compute.googleapis.com notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com
  8. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/aiplatform.user, roles/storage.admin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
    • Replace PROJECT_ID with your project ID.
    • Replace USER_IDENTIFIER with the identifier for your user account. For example, user:myemail@example.com.

    • Replace ROLE with each individual role.
  9. Vertex AI ユーザー(roles/aiplatform.user)IAM ロールにより、Vertex AI 内のすべてのリソースを使用するためのアクセス権が付与されます。ストレージ管理者roles/storage.admin)ロールを使用すると、ドキュメントのトレーニング データセットを Cloud Storage に保存できます。

次のステップ

このチュートリアルの次のページの手順に沿って、Google Cloud コンソールを使用し、動画分類データセットを作成する。