Entraîner des modèles de ML personnalisés sur Vertex AI Pipelines

Ce tutoriel explique comment utiliser Vertex AI Pipelines pour exécuter un workflow de ML de bout en bout, y compris les tâches suivantes :

  • Importer et transformer des données
  • Entraîner un modèle à l'aide du framework de ML sélectionné
  • Importer le modèle entraîné dans Vertex AI Model Registry
  • Facultatif : déployer le modèle pour la livraison en ligne avec Vertex AI Prediction.

Avant de commencer

  1. Assurez-vous d'avoir effectué les tâches 1 à 3 de la section Configurer un projet Google Cloud et un environnement de développement.

  2. Installez le SDK Vertex AI pour Python et le SDK Kubeflow Pipelines:

    python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
    

Exécuter le pipeline d'entraînement de modèle de ML

Choisissez l'objectif de l'entraînement et le framework de ML dans les onglets suivants pour obtenir des exemples de code à exécuter dans votre environnement. Cet exemple de code effectue les opérations suivantes :

  • Charge les composants à partir d'un dépôt de composants pour les utiliser comme composants fondamentaux du pipeline.
  • Compose un pipeline en créant des tâches de composants et en transmettant des données entre eux à l'aide d'arguments
  • Envoie le pipeline pour exécution sur Vertex AI Pipelines. Voir Tarifs de Vertex AI Pipelines.

Copiez le code dans votre environnement de développement et exécutez-le.

Classification tabulaire

TensorFlow

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
create_fully_connected_tensorflow_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Create_fully_connected_network/component.yaml")
train_model_using_Keras_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Train_model_using_Keras/on_CSV/component.yaml")
predict_with_TensorFlow_model_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Predict/on_CSV/component.yaml")
upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Tensorflow_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_TensorFlow_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    classification_dataset = binarize_column_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_name=label_column,
        predicate=" > 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=classification_dataset,
        fraction_1=training_set_fraction,
    )
    classification_training_data = split_task.outputs["split_1"]
    classification_testing_data = split_task.outputs["split_2"]

    network = create_fully_connected_tensorflow_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        output_activation_name="sigmoid",
        # output_size=1,
    ).outputs["model"]

    model = train_model_using_Keras_on_CSV_op(
        training_data=classification_training_data,
        model=network,
        label_column_name=classification_label_column,
        # Optional:
        loss_function_name="binary_crossentropy",
        number_of_epochs=10,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #metric_names=["mean_absolute_error"],
        #random_seed=0,
    ).outputs["trained_model"]

    predictions = predict_with_TensorFlow_model_on_CSV_data_op(
        dataset=classification_testing_data,
        model=model,
        # label_column_name needs to be set when doing prediction on a dataset that has labels
        label_column_name=classification_label_column,
        # Optional:
        # batch_size=1000,
    ).outputs["predictions"]

    vertex_model_name = upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_model_using_TensorFlow_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

PyTorch

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
create_fully_connected_pytorch_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_fully_connected_network/component.yaml")
train_pytorch_model_from_csv_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Train_PyTorch_model/from_CSV/component.yaml")
create_pytorch_model_archive_with_base_handler_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_PyTorch_Model_Archive/with_base_handler/component.yaml")
upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_PyTorch_model_archive/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_PyTorch_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    classification_training_data = binarize_column_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_name=label_column,
        predicate=" > 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    network = create_fully_connected_pytorch_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        output_activation_name="sigmoid",
        # output_size=1,
    ).outputs["model"]

    model = train_pytorch_model_from_csv_op(
        model=network,
        training_data=classification_training_data,
        label_column_name=classification_label_column,
        loss_function_name="binary_cross_entropy",
        # Optional:
        #number_of_epochs=1,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #batch_log_interval=100,
        #random_seed=0,
    ).outputs["trained_model"]

    model_archive = create_pytorch_model_archive_with_base_handler_op(
        model=model,
        # Optional:
        # model_name="model",
        # model_version="1.0",
    ).outputs["Model archive"]

    vertex_model_name = upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op(
        model_archive=model_archive,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_classification_model_using_PyTorch_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

XGBoost

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
train_XGBoost_model_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Train/component.yaml")
xgboost_predict_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Predict/component.yaml")
upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_XGBoost_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_model_using_XGBoost_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    classification_dataset = binarize_column_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_name=label_column,
        predicate="> 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=classification_dataset,
        fraction_1=training_set_fraction,
    )
    classification_training_data = split_task.outputs["split_1"]
    classification_testing_data = split_task.outputs["split_2"]

    model = train_XGBoost_model_on_CSV_op(
        training_data=classification_training_data,
        label_column_name=classification_label_column,
        objective="binary:logistic",
        # Optional:
        #starting_model=None,
        #num_iterations=10,
        #booster_params={},
        #booster="gbtree",
        #learning_rate=0.3,
        #min_split_loss=0,
        #max_depth=6,
    ).outputs["model"]

    # Predicting on the testing data
    predictions = xgboost_predict_on_CSV_op(
        data=classification_testing_data,
        model=model,
        # label_column needs to be set when doing prediction on a dataset that has labels
        label_column_name=classification_label_column,
    ).outputs["predictions"]

    vertex_model_name = upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_model_using_XGBoost_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Scikit-learn

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
binarize_column_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Binarize_column/in_CSV_format/component.yaml")
train_logistic_regression_model_using_scikit_learn_from_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/1f5cf6e06409b704064b2086c0a705e4e6b4fcde/community-content/pipeline_components/ML_frameworks/Scikit_learn/Train_logistic_regression_model/from_CSV/component.yaml")
upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Scikit-learn_pickle_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_classification_logistic_regression_model_using_Scikit_learn_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    # Deploying the model might incur additional costs over time
    deploy_model = False

    classification_label_column = "class"
    all_columns = [label_column] + feature_columns

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    classification_training_data = binarize_column_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_name=label_column,
        predicate="> 0",
        new_column_name=classification_label_column,
    ).outputs["transformed_table"]

    model = train_logistic_regression_model_using_scikit_learn_from_CSV_op(
        dataset=classification_training_data,
        label_column_name=classification_label_column,
        # Optional:
        #penalty="l2",
        #solver="lbfgs",
        #max_iterations=100,
        #multi_class_mode="auto",
        #random_seed=0,
    ).outputs["model"]

    vertex_model_name = upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        sklearn_vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_classification_logistic_regression_model_using_Scikit_learn_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Régression tabulaire

TensorFlow

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
create_fully_connected_tensorflow_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Create_fully_connected_network/component.yaml")
train_model_using_Keras_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Train_model_using_Keras/on_CSV/component.yaml")
predict_with_TensorFlow_model_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/tensorflow/Predict/on_CSV/component.yaml")
upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Tensorflow_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_Tensorflow_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=dataset,
        fraction_1=training_set_fraction,
    )
    training_data = split_task.outputs["split_1"]
    testing_data = split_task.outputs["split_2"]

    network = create_fully_connected_tensorflow_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        # output_activation_name=None,
        # output_size=1,
    ).outputs["model"]

    model = train_model_using_Keras_on_CSV_op(
        training_data=training_data,
        model=network,
        label_column_name=label_column,
        # Optional:
        #loss_function_name="mean_squared_error",
        number_of_epochs=10,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        metric_names=["mean_absolute_error"],
        #random_seed=0,
    ).outputs["trained_model"]

    predictions = predict_with_TensorFlow_model_on_CSV_data_op(
        dataset=testing_data,
        model=model,
        # label_column_name needs to be set when doing prediction on a dataset that has labels
        label_column_name=label_column,
        # Optional:
        # batch_size=1000,
    ).outputs["predictions"]

    vertex_model_name = upload_Tensorflow_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_regression_model_using_Tensorflow_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

PyTorch

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
create_fully_connected_pytorch_network_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_fully_connected_network/component.yaml")
train_pytorch_model_from_csv_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Train_PyTorch_model/from_CSV/component.yaml")
create_pytorch_model_archive_with_base_handler_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/PyTorch/Create_PyTorch_Model_Archive/with_base_handler/component.yaml")
upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_PyTorch_model_archive/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_PyTorch_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    all_columns = [label_column] + feature_columns
    # Deploying the model might incur additional costs over time
    deploy_model = False

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    network = create_fully_connected_pytorch_network_op(
        input_size=len(feature_columns),
        # Optional:
        hidden_layer_sizes=[10],
        activation_name="elu",
        # output_activation_name=None,
        # output_size=1,
    ).outputs["model"]

    model = train_pytorch_model_from_csv_op(
        model=network,
        training_data=training_data,
        label_column_name=label_column,
        # Optional:
        #loss_function_name="mse_loss",
        #number_of_epochs=1,
        #learning_rate=0.1,
        #optimizer_name="Adadelta",
        #optimizer_parameters={},
        #batch_size=32,
        #batch_log_interval=100,
        #random_seed=0,
    ).outputs["trained_model"]

    model_archive = create_pytorch_model_archive_with_base_handler_op(
        model=model,
        # Optional:
        # model_name="model",
        # model_version="1.0",
    ).outputs["Model archive"]

    vertex_model_name = upload_PyTorch_model_archive_to_Google_Cloud_Vertex_AI_op(
        model_archive=model_archive,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func=train_tabular_regression_model_using_PyTorch_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

XGBoost

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
split_rows_into_subsets_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/dataset_manipulation/Split_rows_into_subsets/in_CSV/component.yaml")
train_XGBoost_model_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Train/component.yaml")
xgboost_predict_on_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/XGBoost/Predict/component.yaml")
upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_XGBoost_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_model_using_XGBoost_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    training_set_fraction = 0.8
    # Deploying the model might incur additional costs over time
    deploy_model = False

    all_columns = [label_column] + feature_columns

    dataset = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    dataset = select_columns_using_Pandas_on_CSV_data_op(
        table=dataset,
        column_names=all_columns,
    ).outputs["transformed_table"]

    dataset = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=dataset,
        replacement_value="0",
        # # Optional:
        # column_names=None,  # =[...]
    ).outputs["transformed_table"]

    split_task = split_rows_into_subsets_op(
        table=dataset,
        fraction_1=training_set_fraction,
    )
    training_data = split_task.outputs["split_1"]
    testing_data = split_task.outputs["split_2"]

    model = train_XGBoost_model_on_CSV_op(
        training_data=training_data,
        label_column_name=label_column,
        # Optional:
        #starting_model=None,
        #num_iterations=10,
        #booster_params={},
        #objective="reg:squarederror",
        #booster="gbtree",
        #learning_rate=0.3,
        #min_split_loss=0,
        #max_depth=6,
    ).outputs["model"]

    # Predicting on the testing data
    predictions = xgboost_predict_on_CSV_op(
        data=testing_data,
        model=model,
        # label_column needs to be set when doing prediction on a dataset that has labels
        label_column_name=label_column,
    ).outputs["predictions"]

    vertex_model_name = upload_XGBoost_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_regression_model_using_XGBoost_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Scikit-learn

# python3 -m pip install "kfp<2.0.0" "google-cloud-aiplatform>=1.16.0" --upgrade --quiet
from kfp import components

# %% Loading components
download_from_gcs_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/storage/download/component.yaml")
select_columns_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Select_columns/in_CSV_format/component.yaml")
fill_all_missing_values_using_Pandas_on_CSV_data_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/pandas/Fill_all_missing_values/in_CSV_format/component.yaml")
train_linear_regression_model_using_scikit_learn_from_CSV_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/1f5cf6e06409b704064b2086c0a705e4e6b4fcde/community-content/pipeline_components/ML_frameworks/Scikit_learn/Train_linear_regression_model/from_CSV/component.yaml")
upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Upload_Scikit-learn_pickle_model/component.yaml")
deploy_model_to_endpoint_op = components.load_component_from_url("https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/399405402d95f4a011e2d2e967c96f8508ba5688/community-content/pipeline_components/google-cloud/Vertex_AI/Models/Deploy_to_endpoint/component.yaml")

# %% Pipeline definition
def train_tabular_regression_linear_model_using_Scikit_learn_pipeline():
    dataset_gcs_uri = "gs://ml-pipeline-dataset/Chicago_taxi_trips/chicago_taxi_trips_2019-01-01_-_2019-02-01_limit=10000.csv"
    feature_columns = ["trip_seconds", "trip_miles", "pickup_community_area", "dropoff_community_area", "fare", "tolls", "extras"]  # Excluded "trip_total"
    label_column = "tips"
    all_columns = [label_column] + feature_columns
    # Deploying the model might incur additional costs over time
    deploy_model = False

    training_data = download_from_gcs_op(
        gcs_path=dataset_gcs_uri
    ).outputs["Data"]

    training_data = select_columns_using_Pandas_on_CSV_data_op(
        table=training_data,
        column_names=all_columns,
    ).outputs["transformed_table"]

    # Cleaning the NaN values.
    training_data = fill_all_missing_values_using_Pandas_on_CSV_data_op(
        table=training_data,
        replacement_value="0",
        #replacement_type_name="float",
    ).outputs["transformed_table"]

    model = train_linear_regression_model_using_scikit_learn_from_CSV_op(
        dataset=training_data,
        label_column_name=label_column,
    ).outputs["model"]

    vertex_model_name = upload_Scikit_learn_pickle_model_to_Google_Cloud_Vertex_AI_op(
        model=model,
    ).outputs["model_name"]

    # Deploying the model might incur additional costs over time
    if deploy_model:
        sklearn_vertex_endpoint_name = deploy_model_to_endpoint_op(
            model_name=vertex_model_name,
        ).outputs["endpoint_name"]

pipeline_func = train_tabular_regression_linear_model_using_Scikit_learn_pipeline

# %% Pipeline submission
if __name__ == '__main__':
    from google.cloud import aiplatform
    aiplatform.PipelineJob.from_pipeline_func(pipeline_func=pipeline_func).submit()

Veuillez noter les points suivants concernant les exemples de code fournis :

  • Un pipeline Kubeflow est défini comme une fonction Python.
  • Les étapes du workflow du pipeline sont créées à l'aide des composants du pipeline Kubeflow. En utilisant les sorties d'un composant comme entrée d'un autre composant, vous définissez le workflow du pipeline sous forme de graphe. Par exemple, la tâche du composant fill_all_missing_values_using_Pandas_on_CSV_data_op dépend de la sortie transformed_table de la tâche du composant select_columns_using_Pandas_on_CSV_data_op.
  • Vous créez une exécution de pipeline sur Vertex AI Pipelines à l'aide du SDK Vertex AI pour Python.

Surveiller le pipeline

Dans la section Vertex AI de la console Google Cloud, accédez à la page Pipelines et ouvrez l'onglet Exécutions.

Accéder à la page Exécutions de pipeline

Étapes suivantes