Questa pagina mostra come ottenere previsioni e spiegazioni online (in tempo reale) dai tuoi modelli di classificazione o regressione tabulari utilizzando la console Google Cloud o l'API Vertex AI.
Una previsione online è una richiesta sincrona, mentre una previsione batch è una richiesta asincrona. Utilizza le previsioni online quando crei in risposta all'input dell'applicazione o in altre situazioni in cui richiedono un'inferenza tempestiva.
Devi eseguire il deployment di un modello su un endpoint prima che il modello possa essere utilizzato le previsioni online. Il deployment di un modello associa le risorse fisiche in modo che possa fornire previsioni online con bassa latenza.
Gli argomenti trattati sono:
- Deployment di un modello in un endpoint
- Ottieni una previsione online utilizzando il modello di cui hai eseguito il deployment
Prima di iniziare
Prima di poter ottenere previsioni online, è necessario addestrare un modello.
esegui il deployment di un modello in un endpoint
Puoi eseguire il deployment di più modelli in un endpoint e puoi eseguire il deployment di un modello in più di un endpoint. Per ulteriori informazioni sulle opzioni e sui casi d'uso per sul deployment dei modelli, consulta Informazioni sul deployment dei modelli.
Utilizza uno dei seguenti metodi per eseguire il deployment di un modello:
Console Google Cloud
Nella console Google Cloud, nella sezione Vertex AI, vai a la pagina Modelli.
Fai clic sul nome del modello di cui vuoi eseguire il deployment per aprire la relativa pagina dei dettagli.
Seleziona la casella di controllo Deploy & Scheda Test.
Se il modello è già stato distribuito in altri endpoint, questi vengono elencati nella Sezione Deployment del modello.
Fai clic su Esegui il deployment nell'endpoint.
Nella pagina Definisci l'endpoint, configura come segue:
Puoi scegliere di eseguire il deployment del modello su un endpoint nuovo o esistente.
- Per eseguire il deployment del modello in un nuovo endpoint, seleziona Crea nuovo endpoint e fornisci un nome per il nuovo endpoint.
- Per eseguire il deployment del modello in un endpoint esistente, seleziona Aggiungi a endpoint esistente e seleziona l'endpoint dall'elenco a discesa.
- Puoi aggiungere più di un modello a un endpoint e aggiungerne uno a più di un endpoint. Scopri di più.
Fai clic su Continua.
Nella pagina Impostazioni modello, configura come segue:
-
Se esegui il deployment del modello in un nuovo endpoint, accetta 100 per il Suddivisione traffico. Se esegui il deployment del modello in un endpoint esistente che ha uno o è stato eseguito il deployment di più modelli, devi aggiornare la suddivisione del traffico percentuale per il modello di cui esegui il deployment e per i modelli di cui è già stato eseguito il deployment in modo che la somma di tutte le percentuali arrivi al 100%.
-
Inserisci il numero minimo di nodi di calcolo che vuoi fornire per il tuo modello.
Si tratta del numero di nodi disponibili per questo modello in qualsiasi momento. Ti vengono addebitati i nodi utilizzati, se gestire il carico della previsione o per i nodi in standby (minimo), anche senza traffico di previsione. Consulta la pagina dei prezzi.
-
Seleziona il Tipo di macchina.
L'utilizzo di risorse più grandi della macchina incrementerà le prestazioni di previsione e aumentare i costi.
-
Scopri come modificare le impostazioni predefinite per la registrazione delle previsioni.
-
Fai clic su Continua.
-
Nella pagina Monitoraggio del modello, fai clic su Continua.
Nella pagina Obiettivi di Monitoring, configura come segue:
- Inserisci la località dei dati di addestramento.
- Inserisci il nome della colonna di destinazione.
Fai clic su Esegui il deployment per eseguire il deployment del modello nell'endpoint.
API
Quando esegui il deployment di un modello utilizzando l'API Vertex AI, completi seguenti passaggi:
- Se necessario, crea un endpoint.
- Recupera l'ID endpoint.
- Eseguire il deployment del modello nell'endpoint.
Creazione di un endpoint
Se esegui il deployment di un modello in un endpoint esistente, puoi saltare questo passaggio.
gcloud
L'esempio seguente utilizza il comando gcloud ai endpoints create
:
gcloud ai endpoints create \
--region=LOCATION \
--display-name=ENDPOINT_NAME
Sostituisci quanto segue:
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
ENDPOINT_NAME: il nome visualizzato dell'endpoint.
Lo strumento Google Cloud CLI potrebbe richiedere alcuni secondi per creare l'endpoint.
REST
Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:
- LOCATION_ID: la tua regione.
- PROJECT_ID: il tuo ID progetto.
- ENDPOINT_NAME: il nome visualizzato dell'endpoint.
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints
Corpo JSON della richiesta:
{ "display_name": "ENDPOINT_NAME" }
Per inviare la richiesta, espandi una delle seguenti opzioni:
Dovresti ricevere una risposta JSON simile alla seguente:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEndpointOperationMetadata", "genericMetadata": { "createTime": "2020-11-05T17:45:42.812656Z", "updateTime": "2020-11-05T17:45:42.812656Z" } } }
"done": true
.
Java
Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.
Recuperare l'ID endpoint
L'ID endpoint è necessario per eseguire il deployment del modello.
gcloud
Nell'esempio seguente viene utilizzato il comando gcloud ai endpoints list
:
gcloud ai endpoints list \
--region=LOCATION \
--filter=display_name=ENDPOINT_NAME
Sostituisci quanto segue:
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
ENDPOINT_NAME: il nome visualizzato dell'endpoint.
Prendi nota del numero visualizzato nella colonna
ENDPOINT_ID
. Usa questo ID nel campo successivo.
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
- PROJECT_ID: il tuo ID progetto.
- ENDPOINT_NAME: il nome visualizzato dell'endpoint.
Metodo HTTP e URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints?filter=display_name=ENDPOINT_NAME
Per inviare la richiesta, espandi una delle seguenti opzioni:
Dovresti ricevere una risposta JSON simile alla seguente:
{ "endpoints": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID", "displayName": "ENDPOINT_NAME", "etag": "AMEw9yPz5pf4PwBHbRWOGh0PcAxUdjbdX2Jm3QO_amguy3DbZGP5Oi_YUKRywIE-BtLx", "createTime": "2020-04-17T18:31:11.585169Z", "updateTime": "2020-04-17T18:35:08.568959Z" } ] }
Esegui il deployment del modello
Seleziona di seguito la scheda per la tua lingua o il tuo ambiente:
gcloud
Nei seguenti esempi viene utilizzato il comando gcloud ai endpoints deploy-model
.
L'esempio seguente esegue il deployment di un Model
in un Endpoint
senza utilizzare GPU
per accelerare la fornitura delle previsioni e senza suddividere il traffico tra più
DeployedModel
risorse:
Prima di utilizzare i dati dei comandi riportati di seguito, effettua le seguenti sostituzioni:
- ENDPOINT_ID: l'ID dell'endpoint.
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
- MODEL_ID: l'ID del modello di cui eseguire il deployment.
-
DEPLOYED_MODEL_NAME: un nome per
DeployedModel
. Puoi utilizzare il nome visualizzato delModel
anche perDeployedModel
. -
MACHINE_TYPE: facoltativo. Le risorse macchina utilizzate per ogni nodo
e deployment continuo. L'impostazione predefinita è
n1-standard-2
. Scopri di più sui tipi di macchina. -
MIN_REPLICA_COUNT: il numero minimo di nodi per questo deployment.
Il conteggio dei nodi può essere aumentato o diminuito in base al carico della previsione.
fino al numero massimo di nodi e mai meno di questo numero.
Questo valore deve essere maggiore o uguale a 1. Se il flag
--min-replica-count
è omesso, il valore predefinito è 1. -
MAX_REPLICA_COUNT: il numero massimo di nodi per questo deployment.
Il conteggio dei nodi può essere aumentato o diminuito in base al carico della previsione.
fino a questo numero di nodi e mai meno del numero minimo di nodi.
Se ometti il flag
--max-replica-count
: il numero massimo di nodi è impostato sul valore di--min-replica-count
.
Esegui la gcloud ai endpoint deploy-model :
Linux, macOS o Cloud Shell
gcloud ai endpoints deploy-model ENDPOINT_ID\ --region=LOCATION_ID \ --model=MODEL_ID \ --display-name=DEPLOYED_MODEL_NAME \ --machine-type=MACHINE_TYPE \ --min-replica-count=MIN_REPLICA_COUNT \ --max-replica-count=MAX_REPLICA_COUNT \ --traffic-split=0=100
Windows (PowerShell)
gcloud ai endpoints deploy-model ENDPOINT_ID` --region=LOCATION_ID ` --model=MODEL_ID ` --display-name=DEPLOYED_MODEL_NAME ` --machine-type=MACHINE_TYPE ` --min-replica-count=MIN_REPLICA_COUNT ` --max-replica-count=MAX_REPLICA_COUNT ` --traffic-split=0=100
Windows (cmd.exe)
gcloud ai endpoints deploy-model ENDPOINT_ID^ --region=LOCATION_ID ^ --model=MODEL_ID ^ --display-name=DEPLOYED_MODEL_NAME ^ --machine-type=MACHINE_TYPE ^ --min-replica-count=MIN_REPLICA_COUNT ^ --max-replica-count=MAX_REPLICA_COUNT ^ --traffic-split=0=100
Suddivisione del traffico
Il flag --traffic-split=0=100
negli esempi precedenti invia il 100% della previsione
il traffico ricevuto dal Endpoint
al nuovo DeployedModel
, che
rappresentato dall'ID temporaneo 0
. Se il tuo Endpoint
ha già altri
DeployedModel
risorse, quindi puoi suddividere il traffico tra le nuove risorse
DeployedModel
e quelli precedenti.
Ad esempio, per inviare il 20% del traffico al nuovo DeployedModel
e l'80% a quello precedente,
esegui questo comando.
Prima di utilizzare uno qualsiasi dei dati di comando riportati di seguito, effettua le seguenti sostituzioni:
- OLD_DEPLOYED_MODEL_ID: l'ID dell'attuale
DeployedModel
.
Esegui la gcloud ai endpoint deploy-model :
Linux, macOS o Cloud Shell
gcloud ai endpoints deploy-model ENDPOINT_ID\ --region=LOCATION_ID \ --model=MODEL_ID \ --display-name=DEPLOYED_MODEL_NAME \ --machine-type=MACHINE_TYPE \ --min-replica-count=MIN_REPLICA_COUNT \ --max-replica-count=MAX_REPLICA_COUNT \ --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80
Windows (PowerShell)
gcloud ai endpoints deploy-model ENDPOINT_ID` --region=LOCATION_ID ` --model=MODEL_ID ` --display-name=DEPLOYED_MODEL_NAME \ --machine-type=MACHINE_TYPE ` --min-replica-count=MIN_REPLICA_COUNT ` --max-replica-count=MAX_REPLICA_COUNT ` --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80
Windows (cmd.exe)
gcloud ai endpoints deploy-model ENDPOINT_ID^ --region=LOCATION_ID ^ --model=MODEL_ID ^ --display-name=DEPLOYED_MODEL_NAME \ --machine-type=MACHINE_TYPE ^ --min-replica-count=MIN_REPLICA_COUNT ^ --max-replica-count=MAX_REPLICA_COUNT ^ --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80
REST
Puoi utilizzare endpoints.predict per richiedere una previsione online.
Esegui il deployment del modello.
Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
- PROJECT_ID: il tuo ID progetto.
- ENDPOINT_ID: l'ID dell'endpoint.
- MODEL_ID: l'ID del modello da implementare.
-
DEPLOYED_MODEL_NAME: un nome per
DeployedModel
. Puoi utilizzare il nome visualizzato delModel
anche perDeployedModel
. -
MACHINE_TYPE: facoltativo. Le risorse macchina utilizzate per ogni nodo
e deployment continuo. L'impostazione predefinita è
n1-standard-2
. Scopri di più sui tipi di macchine. - ACCELERATOR_TYPE: tipo di acceleratore da associare alla macchina. Facoltativa se ACCELERATOR_COUNT non è specificato o è zero. Sconsigliato per Modelli AutoML o modelli addestrati personalizzati che utilizzano immagini non GPU. Scopri di più.
- ACCELERATOR_COUNT: il numero di acceleratori da utilizzare per ogni replica. Facoltativo. Deve essere zero o non specificato per i modelli AutoML o i modelli con addestramento personalizzato che utilizzano immagini non GPU.
- MIN_REPLICA_COUNT: numero minimo di nodi per questo deployment. Il conteggio dei nodi può essere aumentato o diminuito in base al carico della previsione. fino al numero massimo di nodi e mai meno di questo numero. Questo valore deve essere maggiore o uguale a 1.
- MAX_REPLICA_COUNT: il numero massimo di nodi per questo deployment. Il conteggio dei nodi può essere aumentato o diminuito in base al carico della previsione. fino a questo numero di nodi e mai meno del numero minimo di nodi.
- TRAFFIC_SPLIT_THIS_MODEL: la percentuale del traffico di previsione per questo endpoint da inoltrare al modello di cui viene eseguito il deployment con questa operazione. Il valore predefinito è 100. Tutto il traffico la somma delle percentuali deve essere 100. Scopri di più sulle suddivisioni del traffico.
- DEPLOYED_MODEL_ID_N: facoltativo. Se viene eseguito il deployment di altri modelli su questo endpoint, devono aggiornare le rispettive percentuali di suddivisione del traffico in modo che la somma di tutte le percentuali arrivi a 100.
- TRAFFIC_SPLIT_MODEL_N: il valore percentuale di suddivisione del traffico per l'ID del modello di cui è stato eseguito il deployment chiave.
- PROJECT_NUMBER: il numero di progetto generato automaticamente per il tuo progetto
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:deployModel
Corpo JSON della richiesta:
{ "deployedModel": { "model": "projects/PROJECT/locations/us-central1/models/MODEL_ID", "displayName": "DEPLOYED_MODEL_NAME", "dedicatedResources": { "machineSpec": { "machineType": "MACHINE_TYPE", "acceleratorType": "ACCELERATOR_TYPE", "acceleratorCount": "ACCELERATOR_COUNT" }, "minReplicaCount": MIN_REPLICA_COUNT, "maxReplicaCount": MAX_REPLICA_COUNT }, }, "trafficSplit": { "0": TRAFFIC_SPLIT_THIS_MODEL, "DEPLOYED_MODEL_ID_1": TRAFFIC_SPLIT_MODEL_1, "DEPLOYED_MODEL_ID_2": TRAFFIC_SPLIT_MODEL_2 }, }
Per inviare la richiesta, espandi una delle seguenti opzioni:
Dovresti ricevere una risposta JSON simile alla seguente:
{ "name": "projects/PROJECT_ID/locations/LOCATION/endpoints/ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployModelOperationMetadata", "genericMetadata": { "createTime": "2020-10-19T17:53:16.502088Z", "updateTime": "2020-10-19T17:53:16.502088Z" } } }
Java
Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.
Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Node.js
Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Scopri come modificare le impostazioni predefinite per il logging delle previsioni.
Ottieni stato dell'operazione
Alcune richieste avviano operazioni a lunga esecuzione che richiedono tempo per essere completate. Questi restituiscono il nome di un'operazione, che puoi utilizzare per visualizzare o annullare l'operazione. Vertex AI offre metodi helper per effettuare chiamate a operazioni a lunga esecuzione. Per ulteriori informazioni, consulta la sezione Utilizzo di modelli operazioni.
Ottieni una previsione online utilizzando il modello di cui hai eseguito il deployment
Per fare una previsione online, invia uno o più elementi di test a un modello per e il modello restituisce risultati basati sui dati del modello obiettivo. Utilizza la console Google Cloud o l'API Vertex AI per richiedere un la previsione online.
Console Google Cloud
Nella console Google Cloud, nella sezione Vertex AI, vai a la pagina Modelli.
Nell'elenco dei modelli, fai clic sul nome del modello per richiedere previsioni da cui proviene.
Seleziona la scheda Deployment e test.
Nella sezione Testa il modello, aggiungi elementi di test per richiedere un la previsione. I dati di previsione di riferimento sono compilati automaticamente oppure inserire i tuoi dati di previsione e fare clic su Prevedi.
Una volta completata la previsione, Vertex AI restituisce i risultati in la console.
API: classificazione
gcloud
-
Crea un file denominato
request.json
con il seguente contenuto:{ "instances": [ { PREDICTION_DATA_ROW } ] }
Sostituisci quanto segue:
-
PREDICTION_DATA_ROW: un oggetto JSON con le chiavi come nomi delle funzionalità e i valori come valori delle funzionalità corrispondenti. Ad esempio, per un set di dati con un numero, un array di stringhe e una categoria, la riga di dati potrebbe essere simile alla seguente richiesta di esempio:
"length":3.6, "material":"cotton", "tag_array": ["abc","def"]
È obbligatorio specificare un valore per ogni caratteristica inclusa nell'addestramento. Il formato dei dati utilizzati per la previsione deve corrispondere a quello utilizzato per l'addestramento. Consulta Formato dei dati per le previsioni per maggiori dettagli.
-
-
Esegui questo comando:
gcloud ai endpoints predict ENDPOINT_ID \ --region=LOCATION_ID \ --json-request=request.json
Sostituisci quanto segue:
- ENDPOINT_ID: l'ID dell'endpoint.
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
REST
Puoi utilizzare endpoints.predict per richiedere una previsione online.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
-
LOCATION_ID: regione in cui si trova l'endpoint. Ad esempio,
us-central1
. - PROJECT_ID: il tuo ID progetto.
- ENDPOINT_ID: l'ID dell'endpoint.
-
PREDICTION_DATA_ROW: un oggetto JSON con chiavi come nomi delle funzionalità e valori come i valori delle caratteristiche corrispondenti. Ad esempio, per un set di dati con un numero, un array di stringhe e una categoria, la riga di dati potrebbe avere il seguente aspetto:
"length":3.6, "material":"cotton", "tag_array": ["abc","def"]
È obbligatorio specificare un valore per ogni caratteristica inclusa nell'addestramento. Il formato dei dati utilizzati per la previsione deve corrispondere a quello utilizzato per l'addestramento. Consulta Formato dei dati per le previsioni per maggiori dettagli.
- DEPLOYED_MODEL_ID: l'output viene generato in base al metodo
predict
. L'ID del utilizzato per generare la previsione.
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict
Corpo JSON della richiesta:
{ "instances": [ { PREDICTION_DATA_ROW } ] }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "predictions": [ { "scores": [ 0.96771615743637085, 0.032283786684274673 ], "classes": [ "0", "1" ] } ] "deployedModelId": "2429510197" }
Java
Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
API: regressione
gcloud
-
Crea un file denominato "request.json" con i seguenti contenuti:
{ "instances": [ { PREDICTION_DATA_ROW } ] }
Sostituisci quanto segue:
-
PREDICTION_DATA_ROW: un oggetto JSON con chiavi come nomi delle funzionalità e valori come i valori delle caratteristiche corrispondenti. Ad esempio, per un set di dati con un numero, un array di numeri e una categoria, la riga di dati potrebbe avere il seguente aspetto:
"age":3.6, "sq_ft":5392, "code": "90331"
È obbligatorio specificare un valore per ogni caratteristica inclusa nell'addestramento. Il formato dei dati utilizzati per la previsione deve corrispondere al formato utilizzato per l'addestramento. Consulta Formato dei dati per le previsioni per maggiori dettagli.
-
-
Esegui questo comando:
gcloud ai endpoints predict ENDPOINT_ID \ --region=LOCATION_ID \ --json-request=request.json
Sostituisci quanto segue:
- ENDPOINT_ID: l'ID dell'endpoint.
- LOCATION_ID: la regione in cui stai utilizzando Vertex AI.
REST
Utilizza il metodo endpoints.predict per richiedere una previsione online.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
-
LOCATION_ID: regione in cui si trova l'endpoint. Ad esempio,
us-central1
. - PROJECT_ID: il tuo ID progetto.
- ENDPOINT_ID: l'ID dell'endpoint.
-
PREDICTION_DATA_ROW: un oggetto JSON con chiavi come nomi delle funzionalità e valori come i valori delle caratteristiche corrispondenti. Ad esempio, per un set di dati con un numero, un array di numeri e una categoria, la riga di dati potrebbe essere simile alla seguente richiesta di esempio:
"age":3.6, "sq_ft":5392, "code": "90331"
È necessario fornire un valore per ogni caratteristica inclusa nell'addestramento. Il formato dei dati utilizzati per la previsione deve corrispondere al formato utilizzato per l'addestramento. Per informazioni dettagliate, consulta Formato dei dati per le previsioni.
- DEPLOYED_MODEL_ID: output con il metodo
predict
. L'ID del modello utilizzato per generare la previsione.
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict
Corpo JSON della richiesta:
{ "instances": [ { PREDICTION_DATA_ROW } ] }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
.
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "predictions": [ [ { "value": 65.14233 } ] ], "deployedModelId": "DEPLOYED_MODEL_ID" }
Java
Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Interpretare i risultati delle previsioni
Classificazione
I modelli di classificazione restituiscono un punteggio di confidenza.
Il punteggio di confidenza indica il livello di associazione di ogni modello una classe o un'etichetta con un elemento di test. Più alto è il numero, più alto è il valore con la certezza che l'etichetta deve essere applicata all'elemento. Sei tu a decidere quanto in alto il punteggio di confidenza deve consentire l'accettazione dei risultati del modello.
Regressione
I modelli di regressione restituiscono un valore di previsione.
Se il tuo modello utilizza l'inferenza probabilistica, il campo value
contiene il parametro
minimizzando l'obiettivo di ottimizzazione. Ad esempio, se la tua ottimizzazione
l'obiettivo è minimize-rmse
, il campo value
contiene il valore medio.
Se è minimize-mae
, il campo value
contiene il valore mediano.
Se il tuo modello utilizza l'inferenza probabilistica con i quantili, Vertex AI fornisce valori dei quantili e previsioni oltre al minimo obiettivo di ottimizzazione. I valori quantili vengono impostati durante l'addestramento del modello. Quantile sono i valori di previsione associati ai valori dei quantili.
Passaggi successivi
- Scopri come esportare il modello.
- Scopri di più sui prezzi delle previsioni online.