Diffuser des données à l'aide de l'API Storage Write

Ce document explique comment utiliser l'API BigQuery Storage Write pour diffuser des données en streaming dans BigQuery.

Dans les scénarios de streaming, les données arrivent en continu et doivent être disponibles pour les lectures avec une latence minimale. Lorsque vous utilisez l'API BigQuery Storage Write pour les charges de travail de streaming, tenez compte des garanties dont vous avez besoin :

  • Si votre application n'a besoin que de la sémantique de type "au moins une fois", utilisez le flux par défaut.
  • Si vous avez besoin de la sémantique de type "exactement une fois", créez un ou plusieurs flux en type commit et utilisez des décalages de flux pour garantir des écritures de type "exactement une fois".

En type commit, les données écrites dans le flux sont disponibles pour la requête dès que le serveur a confirmé la requête d'écriture. Le flux par défaut utilise également le type commit, mais n'offre pas de garanties de type "exactement une fois".

Utiliser le flux par défaut pour la sémantique de type "au moins une fois"

Si votre application peut accepter que des enregistrements en double apparaissent dans la table de destination, nous vous recommandons d'utiliser le flux par défaut pour les scénarios de streaming.

Le code suivant montre comment écrire des données dans le flux par défaut :

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour BigQuery, consultez la page sur les bibliothèques clientes BigQuery. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Java.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutureCallback;
import com.google.api.core.ApiFutures;
import com.google.api.gax.core.FixedExecutorProvider;
import com.google.api.gax.retrying.RetrySettings;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableResult;
import com.google.cloud.bigquery.storage.v1.AppendRowsRequest;
import com.google.cloud.bigquery.storage.v1.AppendRowsResponse;
import com.google.cloud.bigquery.storage.v1.BigQueryWriteClient;
import com.google.cloud.bigquery.storage.v1.BigQueryWriteSettings;
import com.google.cloud.bigquery.storage.v1.Exceptions;
import com.google.cloud.bigquery.storage.v1.Exceptions.AppendSerializationError;
import com.google.cloud.bigquery.storage.v1.Exceptions.MaximumRequestCallbackWaitTimeExceededException;
import com.google.cloud.bigquery.storage.v1.Exceptions.StorageException;
import com.google.cloud.bigquery.storage.v1.Exceptions.StreamWriterClosedException;
import com.google.cloud.bigquery.storage.v1.JsonStreamWriter;
import com.google.cloud.bigquery.storage.v1.TableName;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.protobuf.ByteString;
import com.google.protobuf.Descriptors.DescriptorValidationException;
import java.io.IOException;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.Phaser;
import java.util.concurrent.atomic.AtomicInteger;
import javax.annotation.concurrent.GuardedBy;
import org.json.JSONArray;
import org.json.JSONObject;
import org.threeten.bp.Duration;

public class WriteToDefaultStream {

  public static void runWriteToDefaultStream()
      throws DescriptorValidationException, InterruptedException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    writeToDefaultStream(projectId, datasetName, tableName);
  }

  private static ByteString buildByteString() {
    byte[] bytes = new byte[] {1, 2, 3, 4, 5};
    return ByteString.copyFrom(bytes);
  }

  // Create a JSON object that is compatible with the table schema.
  private static JSONObject buildRecord(int i, int j) {
    JSONObject record = new JSONObject();
    StringBuilder sbSuffix = new StringBuilder();
    for (int k = 0; k < j; k++) {
      sbSuffix.append(k);
    }
    record.put("test_string", String.format("record %03d-%03d %s", i, j, sbSuffix.toString()));
    ByteString byteString = buildByteString();
    record.put("test_bytes", byteString);
    record.put(
        "test_geo",
        "POLYGON((-124.49 47.35,-124.49 40.73,-116.49 40.73,-116.49 47.35,-124.49 47.35))");
    return record;
  }

  public static void writeToDefaultStream(String projectId, String datasetName, String tableName)
      throws DescriptorValidationException, InterruptedException, IOException {
    TableName parentTable = TableName.of(projectId, datasetName, tableName);

    DataWriter writer = new DataWriter();
    // One time initialization for the worker.
    writer.initialize(parentTable);

    // Write two batches of fake data to the stream, each with 10 JSON records.  Data may be
    // batched up to the maximum request size:
    // https://cloud.google.com/bigquery/quotas#write-api-limits
    for (int i = 0; i < 2; i++) {
      JSONArray jsonArr = new JSONArray();
      for (int j = 0; j < 10; j++) {
        JSONObject record = buildRecord(i, j);
        jsonArr.put(record);
      }

      writer.append(new AppendContext(jsonArr));
    }

    // Final cleanup for the stream during worker teardown.
    writer.cleanup();
    verifyExpectedRowCount(parentTable, 12);
    System.out.println("Appended records successfully.");
  }

  private static void verifyExpectedRowCount(TableName parentTable, int expectedRowCount)
      throws InterruptedException {
    String queryRowCount =
        "SELECT COUNT(*) FROM `"
            + parentTable.getProject()
            + "."
            + parentTable.getDataset()
            + "."
            + parentTable.getTable()
            + "`";
    QueryJobConfiguration queryConfig = QueryJobConfiguration.newBuilder(queryRowCount).build();
    BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();
    TableResult results = bigquery.query(queryConfig);
    int countRowsActual =
        Integer.parseInt(results.getValues().iterator().next().get("f0_").getStringValue());
    if (countRowsActual != expectedRowCount) {
      throw new RuntimeException(
          "Unexpected row count. Expected: " + expectedRowCount + ". Actual: " + countRowsActual);
    }
  }

  private static class AppendContext {

    JSONArray data;

    AppendContext(JSONArray data) {
      this.data = data;
    }
  }

  private static class DataWriter {

    private static final int MAX_RECREATE_COUNT = 3;

    private BigQueryWriteClient client;

    // Track the number of in-flight requests to wait for all responses before shutting down.
    private final Phaser inflightRequestCount = new Phaser(1);
    private final Object lock = new Object();
    private JsonStreamWriter streamWriter;

    @GuardedBy("lock")
    private RuntimeException error = null;

    private AtomicInteger recreateCount = new AtomicInteger(0);

    private JsonStreamWriter createStreamWriter(String tableName)
        throws DescriptorValidationException, IOException, InterruptedException {
      // Configure in-stream automatic retry settings.
      // Error codes that are immediately retried:
      // * ABORTED, UNAVAILABLE, CANCELLED, INTERNAL, DEADLINE_EXCEEDED
      // Error codes that are retried with exponential backoff:
      // * RESOURCE_EXHAUSTED
      RetrySettings retrySettings =
          RetrySettings.newBuilder()
              .setInitialRetryDelay(Duration.ofMillis(500))
              .setRetryDelayMultiplier(1.1)
              .setMaxAttempts(5)
              .setMaxRetryDelay(Duration.ofMinutes(1))
              .build();

      // Use the JSON stream writer to send records in JSON format. Specify the table name to write
      // to the default stream.
      // For more information about JsonStreamWriter, see:
      // https://googleapis.dev/java/google-cloud-bigquerystorage/latest/com/google/cloud/bigquery/storage/v1/JsonStreamWriter.html
      return JsonStreamWriter.newBuilder(tableName, client)
          .setExecutorProvider(FixedExecutorProvider.create(Executors.newScheduledThreadPool(100)))
          .setChannelProvider(
              BigQueryWriteSettings.defaultGrpcTransportProviderBuilder()
                  .setKeepAliveTime(org.threeten.bp.Duration.ofMinutes(1))
                  .setKeepAliveTimeout(org.threeten.bp.Duration.ofMinutes(1))
                  .setKeepAliveWithoutCalls(true)
                  .setChannelsPerCpu(2)
                  .build())
          .setEnableConnectionPool(true)
          // If value is missing in json and there is a default value configured on bigquery
          // column, apply the default value to the missing value field.
          .setDefaultMissingValueInterpretation(
              AppendRowsRequest.MissingValueInterpretation.DEFAULT_VALUE)
          .setRetrySettings(retrySettings)
          .build();
    }

    public void initialize(TableName parentTable)
        throws DescriptorValidationException, IOException, InterruptedException {
      // Initialize client without settings, internally within stream writer a new client will be
      // created with full settings.
      client = BigQueryWriteClient.create();

      streamWriter = createStreamWriter(parentTable.toString());
    }

    public void append(AppendContext appendContext)
        throws DescriptorValidationException, IOException, InterruptedException {
      synchronized (this.lock) {
        if (!streamWriter.isUserClosed()
            && streamWriter.isClosed()
            && recreateCount.getAndIncrement() < MAX_RECREATE_COUNT) {
          streamWriter = createStreamWriter(streamWriter.getStreamName());
          this.error = null;
        }
        // If earlier appends have failed, we need to reset before continuing.
        if (this.error != null) {
          throw this.error;
        }
      }
      // Append asynchronously for increased throughput.
      ApiFuture<AppendRowsResponse> future = streamWriter.append(appendContext.data);
      ApiFutures.addCallback(
          future, new AppendCompleteCallback(this, appendContext), MoreExecutors.directExecutor());

      // Increase the count of in-flight requests.
      inflightRequestCount.register();
    }

    public void cleanup() {
      // Wait for all in-flight requests to complete.
      inflightRequestCount.arriveAndAwaitAdvance();

      client.close();
      // Close the connection to the server.
      streamWriter.close();

      // Verify that no error occurred in the stream.
      synchronized (this.lock) {
        if (this.error != null) {
          throw this.error;
        }
      }
    }

    static class AppendCompleteCallback implements ApiFutureCallback<AppendRowsResponse> {

      private final DataWriter parent;
      private final AppendContext appendContext;

      public AppendCompleteCallback(DataWriter parent, AppendContext appendContext) {
        this.parent = parent;
        this.appendContext = appendContext;
      }

      public void onSuccess(AppendRowsResponse response) {
        System.out.format("Append success\n");
        this.parent.recreateCount.set(0);
        done();
      }

      public void onFailure(Throwable throwable) {
        if (throwable instanceof AppendSerializationError) {
          AppendSerializationError ase = (AppendSerializationError) throwable;
          Map<Integer, String> rowIndexToErrorMessage = ase.getRowIndexToErrorMessage();
          if (rowIndexToErrorMessage.size() > 0) {
            // Omit the faulty rows
            JSONArray dataNew = new JSONArray();
            for (int i = 0; i < appendContext.data.length(); i++) {
              if (!rowIndexToErrorMessage.containsKey(i)) {
                dataNew.put(appendContext.data.get(i));
              } else {
                // process faulty rows by placing them on a dead-letter-queue, for instance
              }
            }

            // Retry the remaining valid rows, but using a separate thread to
            // avoid potentially blocking while we are in a callback.
            if (dataNew.length() > 0) {
              try {
                this.parent.append(new AppendContext(dataNew));
              } catch (DescriptorValidationException e) {
                throw new RuntimeException(e);
              } catch (IOException e) {
                throw new RuntimeException(e);
              } catch (InterruptedException e) {
                throw new RuntimeException(e);
              }
            }
            // Mark the existing attempt as done since we got a response for it
            done();
            return;
          }
        }

        boolean resendRequest = false;
        if (throwable instanceof MaximumRequestCallbackWaitTimeExceededException) {
          resendRequest = true;
        } else if (throwable instanceof StreamWriterClosedException) {
          if (!parent.streamWriter.isUserClosed()) {
            resendRequest = true;
          }
        }
        if (resendRequest) {
          // Retry this request.
          try {
            this.parent.append(new AppendContext(appendContext.data));
          } catch (DescriptorValidationException e) {
            throw new RuntimeException(e);
          } catch (IOException e) {
            throw new RuntimeException(e);
          } catch (InterruptedException e) {
            throw new RuntimeException(e);
          }
          // Mark the existing attempt as done since we got a response for it
          done();
          return;
        }

        synchronized (this.parent.lock) {
          if (this.parent.error == null) {
            StorageException storageException = Exceptions.toStorageException(throwable);
            this.parent.error =
                (storageException != null) ? storageException : new RuntimeException(throwable);
          }
        }
        done();
      }

      private void done() {
        // Reduce the count of in-flight requests.
        this.parent.inflightRequestCount.arriveAndDeregister();
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour BigQuery, consultez la page sur les bibliothèques clientes BigQuery.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

const {adapt, managedwriter} = require('@google-cloud/bigquery-storage');
const {WriterClient, JSONWriter} = managedwriter;

async function appendJSONRowsDefaultStream() {
  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // projectId = 'my_project';
  // datasetId = 'my_dataset';
  // tableId = 'my_table';

  const destinationTable = `projects/${projectId}/datasets/${datasetId}/tables/${tableId}`;
  const writeClient = new WriterClient({projectId});

  try {
    const writeStream = await writeClient.getWriteStream({
      streamId: `${destinationTable}/streams/_default`,
      view: 'FULL',
    });
    const protoDescriptor = adapt.convertStorageSchemaToProto2Descriptor(
      writeStream.tableSchema,
      'root'
    );

    const connection = await writeClient.createStreamConnection({
      streamId: managedwriter.DefaultStream,
      destinationTable,
    });
    const streamId = connection.getStreamId();

    const writer = new JSONWriter({
      streamId,
      connection,
      protoDescriptor,
    });

    let rows = [];
    const pendingWrites = [];

    // Row 1
    let row = {
      row_num: 1,
      customer_name: 'Octavia',
    };
    rows.push(row);

    // Row 2
    row = {
      row_num: 2,
      customer_name: 'Turing',
    };
    rows.push(row);

    // Send batch.
    let pw = writer.appendRows(rows);
    pendingWrites.push(pw);

    rows = [];

    // Row 3
    row = {
      row_num: 3,
      customer_name: 'Bell',
    };
    rows.push(row);

    // Send batch.
    pw = writer.appendRows(rows);
    pendingWrites.push(pw);

    const results = await Promise.all(
      pendingWrites.map(pw => pw.getResult())
    );
    console.log('Write results:', results);
  } catch (err) {
    console.log(err);
  } finally {
    writeClient.close();
  }
}

Python

Cet exemple montre comment insérer un enregistrement avec deux champs à l'aide du flux par défaut:

from google.cloud import bigquery_storage_v1
from google.cloud.bigquery_storage_v1 import types
from google.cloud.bigquery_storage_v1 import writer
from google.protobuf import descriptor_pb2
import logging
import json

import sample_data_pb2

# The list of columns from the table's schema to search in the given data to write to BigQuery.
TABLE_COLUMNS_TO_CHECK = [
    "name",
    "age"
    ]

# Function to create a batch of row data to be serialized.
def create_row_data(data):
    row = sample_data_pb2.SampleData()
    for field in TABLE_COLUMNS_TO_CHECK:
      # Optional fields will be passed as null if not provided
      if field in data:
        setattr(row, field, data[field])
    return row.SerializeToString()

class BigQueryStorageWriteAppend(object):

    # The stream name is: projects/{project}/datasets/{dataset}/tables/{table}/_default
    def append_rows_proto2(
        project_id: str, dataset_id: str, table_id: str, data: dict
    ):

        write_client = bigquery_storage_v1.BigQueryWriteClient()
        parent = write_client.table_path(project_id, dataset_id, table_id)
        stream_name = f'{parent}/_default'
        write_stream = types.WriteStream()

        # Create a template with fields needed for the first request.
        request_template = types.AppendRowsRequest()

        # The request must contain the stream name.
        request_template.write_stream = stream_name

        # Generating the protocol buffer representation of the message descriptor.
        proto_schema = types.ProtoSchema()
        proto_descriptor = descriptor_pb2.DescriptorProto()
        sample_data_pb2.SampleData.DESCRIPTOR.CopyToProto(proto_descriptor)
        proto_schema.proto_descriptor = proto_descriptor
        proto_data = types.AppendRowsRequest.ProtoData()
        proto_data.writer_schema = proto_schema
        request_template.proto_rows = proto_data

        # Construct an AppendRowsStream to send an arbitrary number of requests to a stream.
        append_rows_stream = writer.AppendRowsStream(write_client, request_template)

        # Append proto2 serialized bytes to the serialized_rows repeated field using create_row_data.
        proto_rows = types.ProtoRows()
        for row in data:
            proto_rows.serialized_rows.append(create_row_data(row))

        # Appends data to the given stream.
        request = types.AppendRowsRequest()
        proto_data = types.AppendRowsRequest.ProtoData()
        proto_data.rows = proto_rows
        request.proto_rows = proto_data

        append_rows_stream.send(request)

        print(f"Rows to table: '{parent}' have been written.")

if __name__ == "__main__":

    ###### Uncomment the below block to provide additional logging capabilities ######
    #logging.basicConfig(
    #    level=logging.DEBUG,
    #    format="%(asctime)s [%(levelname)s] %(message)s",
    #    handlers=[
    #        logging.StreamHandler()
    #    ]
    #)
    ###### Uncomment the above block to provide additional logging capabilities ######

    with open('entries.json', 'r') as json_file:
        data = json.load(json_file)
    # Change this to your specific BigQuery project, dataset, table details
    BigQueryStorageWriteAppend.append_rows_proto2("PROJECT_ID","DATASET_ID", "TABLE_ID ",data=data)

Cet exemple de code dépend du module de protocole compilé sample_data_pb2.py. Pour créer le module compilé, exécutez la commande protoc --python_out=. sample_data.proto, où protoc est le compilateur de tampon de protocole. Le fichier sample_data.proto définit le format des messages utilisés dans l'exemple Python. Pour installer le compilateur protoc, suivez les instructions de la page Protocol Buffers : format d'échange de données de Google.

Voici le contenu du fichier sample_data.proto:

message SampleData {
  required string name = 1;
  required int64 age = 2;
}

Ce script utilise le fichier entities.json, qui contient des exemples de données de ligne à insérer dans la table BigQuery:

{"name": "Jim", "age": 35}
{"name": "Jane", "age": 27}

Utiliser le multiplexage

Vous activez le multiplexing au niveau du rédacteur de flux pour le flux par défaut uniquement. Pour activer le multiplexage Java, appelez la méthode setEnableConnectionPool lorsque vous créez un objet StreamWriter ou JsonStreamWriter :

// One possible way for constructing StreamWriter
StreamWriter.newBuilder(streamName)
              .setWriterSchema(protoSchema)
              .setEnableConnectionPool(true)
              .build();
// One possible way for constructing JsonStreamWriter
JsonStreamWriter.newBuilder(tableName, bigqueryClient)
              .setEnableConnectionPool(true)
              .build();

Pour activer le multiplexage Go, consultez la section Partage de connexion (multiplexage).

Utiliser le type commit pour la sémantique de type "exactement une fois"

Si vous avez besoin d'une sémantique d'écriture de type "exactement une fois", créez un flux d'écriture en type commit. En type commit, les enregistrements sont disponibles pour la requête dès que le client reçoit l'accusé de réception du backend.

Le type commit permet d'effectuer une distribution "exactement une fois" dans un flux au moyen de décalages d'enregistrement. En utilisant des décalages d'enregistrement, l'application spécifie le prochain décalage d'ajout dans chaque appel à AppendRows. L'opération d'écriture n'est effectuée que si la valeur de décalage correspond au décalage d'ajout suivant. Pour plus d'informations, consultez la section Gérer les décalages de flux pour obtenir une sémantique de type "exactement une fois".

Si vous ne fournissez pas de décalage, les enregistrements sont ajoutés à la fin actuelle du flux. Dans ce cas, si une requête d'ajout renvoie une erreur, toute nouvelle tentative pourrait entraîner l'affichage de l'enregistrement plusieurs fois dans le flux.

Pour utiliser le type commit, procédez comme suit :

Java

  1. Appelez CreateWriteStream pour créer un ou plusieurs flux en type commit.
  2. Pour chaque flux, appelez AppendRows dans une boucle pour écrire des lots d'enregistrements.
  3. Appelez FinalizeWriteStream pour chaque flux afin de libérer le flux. Après avoir appelé cette méthode, vous ne pouvez plus écrire de lignes dans le flux. Cette étape est facultative en type commit, mais permet d'éviter de dépasser la limite pour les flux actifs. Pour en savoir plus, consultez la section Limiter le taux de création de flux.

Node.js

  1. Appelez createWriteStreamFullResponse pour créer un ou plusieurs flux en type commit.
  2. Pour chaque flux, appelez appendRows dans une boucle pour écrire des lots d'enregistrements.
  3. Appelez finalize pour chaque flux afin de libérer le flux. Après avoir appelé cette méthode, vous ne pouvez plus écrire de lignes dans le flux. Cette étape est facultative en type commit, mais permet d'éviter de dépasser la limite pour les flux actifs. Pour en savoir plus, consultez la section Limiter le taux de création de flux.

Vous ne pouvez pas supprimer un flux explicitement. Les flux suivent la valeur TTL (Time To Live) définie par le système :

  • Un flux validé a une valeur TTL de trois jours s'il ne présente pas de trafic.
  • Par défaut, un flux mis en mémoire tampon a une valeur TTL de sept jours s'il ne présente pas de trafic.

Le code suivant montre comment utiliser le type commit :

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour BigQuery, consultez la page sur les bibliothèques clientes BigQuery. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Java.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutureCallback;
import com.google.api.core.ApiFutures;
import com.google.api.gax.retrying.RetrySettings;
import com.google.cloud.bigquery.storage.v1.AppendRowsResponse;
import com.google.cloud.bigquery.storage.v1.BigQueryWriteClient;
import com.google.cloud.bigquery.storage.v1.CreateWriteStreamRequest;
import com.google.cloud.bigquery.storage.v1.Exceptions;
import com.google.cloud.bigquery.storage.v1.Exceptions.StorageException;
import com.google.cloud.bigquery.storage.v1.FinalizeWriteStreamResponse;
import com.google.cloud.bigquery.storage.v1.JsonStreamWriter;
import com.google.cloud.bigquery.storage.v1.TableName;
import com.google.cloud.bigquery.storage.v1.WriteStream;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.protobuf.Descriptors.DescriptorValidationException;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Phaser;
import javax.annotation.concurrent.GuardedBy;
import org.json.JSONArray;
import org.json.JSONObject;
import org.threeten.bp.Duration;

public class WriteCommittedStream {

  public static void runWriteCommittedStream()
      throws DescriptorValidationException, InterruptedException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";

    writeCommittedStream(projectId, datasetName, tableName);
  }

  public static void writeCommittedStream(String projectId, String datasetName, String tableName)
      throws DescriptorValidationException, InterruptedException, IOException {
    BigQueryWriteClient client = BigQueryWriteClient.create();
    TableName parentTable = TableName.of(projectId, datasetName, tableName);

    DataWriter writer = new DataWriter();
    // One time initialization.
    writer.initialize(parentTable, client);

    try {
      // Write two batches of fake data to the stream, each with 10 JSON records.  Data may be
      // batched up to the maximum request size:
      // https://cloud.google.com/bigquery/quotas#write-api-limits
      long offset = 0;
      for (int i = 0; i < 2; i++) {
        // Create a JSON object that is compatible with the table schema.
        JSONArray jsonArr = new JSONArray();
        for (int j = 0; j < 10; j++) {
          JSONObject record = new JSONObject();
          record.put("col1", String.format("batch-record %03d-%03d", i, j));
          jsonArr.put(record);
        }
        writer.append(jsonArr, offset);
        offset += jsonArr.length();
      }
    } catch (ExecutionException e) {
      // If the wrapped exception is a StatusRuntimeException, check the state of the operation.
      // If the state is INTERNAL, CANCELLED, or ABORTED, you can retry. For more information, see:
      // https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html
      System.out.println("Failed to append records. \n" + e);
    }

    // Final cleanup for the stream.
    writer.cleanup(client);
    System.out.println("Appended records successfully.");
  }

  // A simple wrapper object showing how the stateful stream writer should be used.
  private static class DataWriter {

    private JsonStreamWriter streamWriter;
    // Track the number of in-flight requests to wait for all responses before shutting down.
    private final Phaser inflightRequestCount = new Phaser(1);

    private final Object lock = new Object();

    @GuardedBy("lock")
    private RuntimeException error = null;

    void initialize(TableName parentTable, BigQueryWriteClient client)
        throws IOException, DescriptorValidationException, InterruptedException {
      // Initialize a write stream for the specified table.
      // For more information on WriteStream.Type, see:
      // https://googleapis.dev/java/google-cloud-bigquerystorage/latest/com/google/cloud/bigquery/storage/v1/WriteStream.Type.html
      WriteStream stream = WriteStream.newBuilder().setType(WriteStream.Type.COMMITTED).build();

      CreateWriteStreamRequest createWriteStreamRequest =
          CreateWriteStreamRequest.newBuilder()
              .setParent(parentTable.toString())
              .setWriteStream(stream)
              .build();
      WriteStream writeStream = client.createWriteStream(createWriteStreamRequest);

      // Configure in-stream automatic retry settings.
      // Error codes that are immediately retried:
      // * ABORTED, UNAVAILABLE, CANCELLED, INTERNAL, DEADLINE_EXCEEDED
      // Error codes that are retried with exponential backoff:
      // * RESOURCE_EXHAUSTED
      RetrySettings retrySettings =
          RetrySettings.newBuilder()
              .setInitialRetryDelay(Duration.ofMillis(500))
              .setRetryDelayMultiplier(1.1)
              .setMaxAttempts(5)
              .setMaxRetryDelay(Duration.ofMinutes(1))
              .build();

      // Use the JSON stream writer to send records in JSON format.
      // For more information about JsonStreamWriter, see:
      // https://googleapis.dev/java/google-cloud-bigquerystorage/latest/com/google/cloud/bigquery/storage/v1/JsonStreamWriter.html
      streamWriter =
          JsonStreamWriter.newBuilder(writeStream.getName(), writeStream.getTableSchema(), client)
              .setRetrySettings(retrySettings)
              .build();
    }

    public void append(JSONArray data, long offset)
        throws DescriptorValidationException, IOException, ExecutionException {
      synchronized (this.lock) {
        // If earlier appends have failed, we need to reset before continuing.
        if (this.error != null) {
          throw this.error;
        }
      }
      // Append asynchronously for increased throughput.
      ApiFuture<AppendRowsResponse> future = streamWriter.append(data, offset);
      ApiFutures.addCallback(
          future, new DataWriter.AppendCompleteCallback(this), MoreExecutors.directExecutor());
      // Increase the count of in-flight requests.
      inflightRequestCount.register();
    }

    public void cleanup(BigQueryWriteClient client) {
      // Wait for all in-flight requests to complete.
      inflightRequestCount.arriveAndAwaitAdvance();

      // Close the connection to the server.
      streamWriter.close();

      // Verify that no error occurred in the stream.
      synchronized (this.lock) {
        if (this.error != null) {
          throw this.error;
        }
      }

      // Finalize the stream.
      FinalizeWriteStreamResponse finalizeResponse =
          client.finalizeWriteStream(streamWriter.getStreamName());
      System.out.println("Rows written: " + finalizeResponse.getRowCount());
    }

    public String getStreamName() {
      return streamWriter.getStreamName();
    }

    static class AppendCompleteCallback implements ApiFutureCallback<AppendRowsResponse> {

      private final DataWriter parent;

      public AppendCompleteCallback(DataWriter parent) {
        this.parent = parent;
      }

      public void onSuccess(AppendRowsResponse response) {
        System.out.format("Append %d success\n", response.getAppendResult().getOffset().getValue());
        done();
      }

      public void onFailure(Throwable throwable) {
        synchronized (this.parent.lock) {
          if (this.parent.error == null) {
            StorageException storageException = Exceptions.toStorageException(throwable);
            this.parent.error =
                (storageException != null) ? storageException : new RuntimeException(throwable);
          }
        }
        System.out.format("Error: %s\n", throwable.toString());
        done();
      }

      private void done() {
        // Reduce the count of in-flight requests.
        this.parent.inflightRequestCount.arriveAndDeregister();
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour BigQuery, consultez la page sur les bibliothèques clientes BigQuery.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

const {adapt, managedwriter} = require('@google-cloud/bigquery-storage');
const {WriterClient, JSONWriter} = managedwriter;

async function appendJSONRowsCommittedStream() {
  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // projectId = 'my_project';
  // datasetId = 'my_dataset';
  // tableId = 'my_table';

  const destinationTable = `projects/${projectId}/datasets/${datasetId}/tables/${tableId}`;
  const streamType = managedwriter.CommittedStream;
  const writeClient = new WriterClient({projectId});

  try {
    const writeStream = await writeClient.createWriteStreamFullResponse({
      streamType,
      destinationTable,
    });
    const streamId = writeStream.name;
    console.log(`Stream created: ${streamId}`);

    const protoDescriptor = adapt.convertStorageSchemaToProto2Descriptor(
      writeStream.tableSchema,
      'root'
    );

    const connection = await writeClient.createStreamConnection({
      streamId,
    });

    const writer = new JSONWriter({
      streamId,
      connection,
      protoDescriptor,
    });

    let rows = [];
    const pendingWrites = [];

    // Row 1
    let row = {
      row_num: 1,
      customer_name: 'Octavia',
    };
    rows.push(row);

    // Row 2
    row = {
      row_num: 2,
      customer_name: 'Turing',
    };
    rows.push(row);

    // Send batch.
    let pw = writer.appendRows(rows);
    pendingWrites.push(pw);

    rows = [];

    // Row 3
    row = {
      row_num: 3,
      customer_name: 'Bell',
    };
    rows.push(row);

    // Send batch.
    pw = writer.appendRows(rows);
    pendingWrites.push(pw);

    const results = await Promise.all(
      pendingWrites.map(pw => pw.getResult())
    );
    console.log('Write results:', results);

    const {rowCount} = await connection.finalize();
    console.log(`Row count: ${rowCount}`);
  } catch (err) {
    console.log(err);
  } finally {
    writeClient.close();
  }
}