Menerjemahkan teks dengan fungsi ML.TRANSLATE
Dokumen ini menjelaskan cara menggunakan
fungsi ML.TRANSLATE
dengan
model jarak jauh
untuk menerjemahkan teks dari
tabel standar BigQuery.
Untuk mengetahui informasi tentang inferensi model di BigQuery ML, lihat Ringkasan inferensi model.
Untuk mengetahui informasi tentang jenis model yang didukung dari setiap pernyataan dan fungsi SQL, serta semua pernyataan dan fungsi SQL yang didukung untuk setiap jenis model, baca Perjalanan pengguna menyeluruh untuk setiap model.
Izin yang diperlukan
Untuk membuat koneksi, Anda memerlukan keanggotaan dalam peran berikut:
roles/bigquery.connectionAdmin
Untuk memberikan izin ke akun layanan koneksi, Anda memerlukan izin berikut:
resourcemanager.projects.setIamPolicy
Untuk membuat model menggunakan BigQuery ML, Anda memerlukan izin berikut:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Untuk menjalankan inferensi, Anda memerlukan izin berikut:
bigquery.tables.getData
pada tabelbigquery.models.getData
pada modelbigquery.jobs.create
Sebelum memulai
- Login ke akun Google Cloud Anda. Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa produk kami dalam skenario dunia nyata. Pelanggan baru juga mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.
-
Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
-
Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.
-
Aktifkan API BigQuery, BigQuery Connection API, and Cloud Translation.
-
Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
-
Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.
-
Aktifkan API BigQuery, BigQuery Connection API, and Cloud Translation.
Buat koneksi
Buat koneksi resource cloud, lalu dapatkan akun layanan koneksi.
Pilih salah satu opsi berikut:
Konsol
Buka halaman BigQuery.
Untuk membuat koneksi, klik
Add, lalu klik Connections to external data sources.Dalam daftar Connection type, pilih Vertex AI remote models, remote functions and BigLake (Cloud Resource).
Di kolom Connection ID, masukkan nama untuk koneksi Anda.
Klik Create connection.
Klik Go to connection.
Di panel Connection info, salin ID akun layanan untuk digunakan di langkah berikutnya.
bq
Di lingkungan command line, buat koneksi:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Parameter
--project_id
akan mengganti project default.Ganti kode berikut:
REGION
: region koneksi AndaPROJECT_ID
: project ID Google Cloud AndaCONNECTION_ID
: ID untuk koneksi Anda
Saat Anda membuat resource koneksi, BigQuery akan membuat akun layanan sistem unik dan mengaitkannya dengan koneksi.
Pemecahan masalah: Jika Anda mendapatkan error koneksi berikut, update Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Ambil dan salin ID akun layanan untuk digunakan di langkah berikutnya:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
Outputnya mirip dengan hal berikut ini:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Tambahkan bagian berikut ke dalam file main.tf
Anda.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }Ganti kode berikut:
CONNECTION_ID
: ID untuk koneksi AndaPROJECT_ID
: project ID Google Cloud AndaREGION
: region koneksi Anda
Memberikan akses ke akun layanan
Pilih salah satu opsi berikut:
Konsol
Buka halaman IAM & Admin.
Klik
Add.Dialog Add principals akan terbuka.
Di kolom New principals, masukkan ID akun layanan yang Anda salin sebelumnya.
Di kolom Select a role, pilih Service Usage, lalu pilih Service Usage Consumer.
Klik Add another role.
Pada kolom Pilih peran, pilih BigQuery, lalu pilih Pengguna Koneksi BigQuery.
Click Tambahkan peran lain.
Pada kolom Pilih peran, pilih Cloud Translation, lalu pilih Pengguna Cloud Translation API.
Klik Save.
gcloud
Gunakan
perintah gcloud projects add-iam-policy-binding
:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/cloudtranslate.user' --condition=None
Ganti kode berikut:
PROJECT_NUMBER
: nomor project Anda.MEMBER
: ID akun layanan yang Anda salin sebelumnya.
Kegagalan memberikan izin akan menyebabkan error.
Membuat model
Buat model jarak jauh dengan
REMOTE_SERVICE_TYPE
dari
CLOUD_AI_TRANSLATE_V3
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_TRANSLATE_V3');
Ganti kode berikut:
PROJECT_ID
: project ID Anda.DATASET_ID
: ID set data yang akan berisi model. Set data ini harus berada di lokasi yang sama dengan koneksi yang Anda gunakan.MODEL_NAME
: nama model.REGION
: region yang digunakan oleh koneksi.CONNECTION_ID
: ID koneksi—misalnya,myconnection
.Saat Anda melihat detail koneksi di Konsol Google Cloud, ID koneksi adalah nilai di bagian terakhir ID koneksi yang sepenuhnya memenuhi syarat, yang ditampilkan di Connection ID—misalnya
projects/myproject/locations/connection_location/connections/myconnection
.
Menerjemahkan teks
Menerjemahkan teks dengan fungsi ML.TRANSLATE
:
SELECT * FROM ML.TRANSLATE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, { TABLE PROJECT_ID.DATASET_ID.TABLE_NAME | (QUERY) }, STRUCT('MODE' AS translate_mode, ['LANGUAGE' AS target_language_code]) );
Ganti kode berikut:
PROJECT_ID
: project ID Anda.DATASET_ID
: ID set data yang berisi model.MODEL_NAME
: nama model.TABLE_NAME
: nama tabel yang berisi teks yang akan diterjemahkan dalam kolom bernamatext_content
. Jika teks berada di kolom dengan nama yang berbeda, tentukantext_content
sebagai alias untuk kolom tersebut.QUERY
: kueri yang berisi teks untuk diterjemahkan dalam kolom bernamatext_content
. Jika teks berada dalam kolom dengan nama yang berbeda, tentukantext_content
sebagai alias untuk kolom tersebut.MODE
: nama untuk mode terjemahan yang didukung.LANGUAGE
: nama kode bahasa yang didukung. Argumen ini hanya diperlukan saat Anda menggunakan mode terjemahanTRANSLATE_TEXT
.
Contoh 1
Contoh berikut menerjemahkan teks dari kolom text_content
tabel
ke bahasa Hindi:
SELECT * FROM ML.TRANSLATE( MODEL `mydataset.mytranslatemodel`, TABLE mydataset.mytable, STRUCT('translate_text' AS translate_mode, 'hi' AS target_language_code)) );
Contoh 2
Contoh berikut mendeteksi bahasa teks di kolom comment
tabel:
SELECT * FROM ML.TRANSLATE( MODEL `mydataset.mytranslatemodel`, (SELECT comment AS text_content from mydataset.mytable), STRUCT('detect_language' AS translate_mode) );
Langkah selanjutnya
Coba notebook Analisis data tidak terstruktur dengan model terlatih BigQuery ML dan Vertex AI.