Melakukan deteksi anomali dengan model perkiraan deret waktu multi-variasi
Tutorial ini menunjukkan cara melakukan tugas-tugas berikut:
- Buat
model perkiraan deret waktu
ARIMA_PLUS_XREG
. - Mendeteksi anomali dalam data deret waktu dengan menjalankan
fungsi
ML.DETECT_ANOMALIES
terhadap model.
Tutorial ini menggunakan tabel berikut dari set data epa_historical_air_quality
publik, yang berisi informasi harian PM 2,5, suhu, dan kecepatan angin yang dikumpulkan dari beberapa kota di AS:
epa_historical_air_quality.pm25_nonfrm_daily_summary
epa_historical_air_quality.wind_daily_summary
epa_historical_air_quality.temperature_daily_summary
Izin yang diperlukan
Untuk membuat set data, Anda memerlukan izin IAM
bigquery.datasets.create
.Untuk membuat model, Anda memerlukan izin berikut:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
Untuk menjalankan inferensi, Anda memerlukan izin berikut:
bigquery.models.getData
bigquery.jobs.create
Untuk mengetahui informasi lebih lanjut tentang peran dan izin IAM di BigQuery, baca Pengantar IAM.
Biaya
Dalam dokumen ini, Anda akan menggunakan komponen Google Cloudyang dapat ditagih berikut:
- BigQuery: You incur costs for the data you process in BigQuery.
Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda,
gunakan kalkulator harga.
Untuk informasi lebih lanjut, lihat Harga BigQuery.
Sebelum memulai
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery API.
Membuat set data
Buat set data BigQuery untuk menyimpan model ML Anda.
Konsol
Di Konsol Google Cloud, buka halaman BigQuery.
Di panel Explorer, klik nama project Anda.
Klik
View actions > Create dataset.Di halaman Create dataset, lakukan hal berikut:
Untuk Dataset ID, masukkan
bqml_tutorial
.Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).
Set data publik disimpan di
US
multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.- Jangan ubah setelan default yang tersisa, lalu klik Create dataset.
bq
Untuk membuat set data baru, gunakan perintah bq mk
dengan flag --location
. Untuk daftar lengkap parameter yang mungkin, lihat
referensi
perintah bq mk --dataset
.
Buat set data bernama
bqml_tutorial
dengan lokasi data ditetapkan keUS
dan deskripsiBigQuery ML tutorial dataset
:bq --location=US mk -d \ --description "BigQuery ML tutorial dataset." \ bqml_tutorial
Perintah ini menggunakan pintasan
-d
, bukan flag--dataset
. Jika Anda menghapus-d
dan--dataset
, perintah defaultnya adalah membuat set data.Pastikan set data telah dibuat:
bq ls
API
Panggil metode datasets.insert
dengan resource set data yang ditentukan.
{ "datasetReference": { "datasetId": "bqml_tutorial" } }
Menyiapkan data pelatihan
Data PM2,5, suhu, dan kecepatan angin berada di tabel terpisah.
Buat tabel bqml_tutorial.seattle_air_quality_daily
data pelatihan
dengan menggabungkan data dalam tabel publik ini.
bqml_tutorial.seattle_air_quality_daily
berisi kolom berikut:
date
: tanggal pengamatanPM2.5
: nilai rata-rata PM2.5 untuk setiap hariwind_speed
: kecepatan angin rata-rata untuk setiap haritemperature
: suhu tertinggi untuk setiap hari
Tabel baru memiliki data harian dari 11 Agustus 2009 hingga 31 Januari 2022.
Buka halaman BigQuery.
Di panel editor SQL, jalankan pernyataan SQL berikut:
CREATE TABLE `bqml_tutorial.seattle_air_quality_daily` AS WITH pm25_daily AS ( SELECT avg(arithmetic_mean) AS pm25, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass' GROUP BY date_local ), wind_speed_daily AS ( SELECT avg(arithmetic_mean) AS wind_speed, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.wind_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant' GROUP BY date_local ), temperature_daily AS ( SELECT avg(first_max_value) AS temperature, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature' GROUP BY date_local ) SELECT pm25_daily.date AS date, pm25, wind_speed, temperature FROM pm25_daily JOIN wind_speed_daily USING (date) JOIN temperature_daily USING (date)
Membuat model
Buat model deret waktu multi-variasi, menggunakan data dari
bqml_tutorial.seattle_air_quality_daily
sebagai data pelatihan.
Buka halaman BigQuery.
Di panel editor SQL, jalankan pernyataan SQL berikut:
CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model` OPTIONS ( model_type = 'ARIMA_PLUS_XREG', auto_arima=TRUE, time_series_data_col = 'temperature', time_series_timestamp_col = 'date' ) AS SELECT * FROM `bqml_tutorial.seattle_air_quality_daily`;
Kueri memerlukan waktu beberapa detik untuk diselesaikan, setelah itu model
arimax_model
akan muncul di set databqml_tutorial
di panel Explorer.Karena kueri menggunakan pernyataan
CREATE MODEL
untuk membuat model, tidak akan ada hasil kueri.
Melakukan deteksi anomali pada data historis
Jalankan deteksi anomali terhadap data historis yang Anda gunakan untuk melatih model.
Buka halaman BigQuery.
Di panel editor SQL, jalankan pernyataan SQL berikut:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold) ) ORDER BY date ASC;
Hasilnya akan terlihat seperti berikut:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-11 00:00:00 UTC | 70.1 | false | 67.65880237416745 | 72.541197625832538 | 0 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-12 00:00:00 UTC | 73.4 | false | 71.715603233887791 | 76.597998485552878 | 0.20589853827304627 | +--------------------------------------------------------------------------------------------------------------------+ | 2009-08-13 00:00:00 UTC | 64.6 | true | 67.741606808079425 | 72.624002059744512 | 0.94627126678202522 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
Melakukan deteksi anomali pada data baru
Jalankan deteksi anomali pada data baru yang Anda buat.
Buka halaman BigQuery.
Di panel editor SQL, jalankan pernyataan SQL berikut:
SELECT * FROM ML.DETECT_ANOMALIES ( MODEL `bqml_tutorial.arimax_model`, STRUCT(0.6 AS anomaly_prob_threshold), ( SELECT * FROM UNNEST( [ STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64> ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0), ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5), ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5), ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0), ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0), ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5), ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5), ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5), ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5), ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5) ] ) ) );
Hasilnya akan terlihat seperti berikut:
+-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+ | date | temperature | is_anomaly | lower_bound | upper_bound | anomaly_probability | pm25 | wind_speed | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-01 00:00:00 UTC | 44.0 | true | 36.917405956304407 | 41.79980120796948 | 0.890904731626234 | 8.8166665 | 1.6525 | +----------------------------------------------------------------------------------------------------------------------------------------------+ | 2023-02-02 00:00:00 UTC | 40.5 | false | 34.622436643607685 | 40.884690866417984 | 0.53985850962605064 | 11.8354165 | 1.558333 | +--------------------------------------------------------------------------------------------------------------------+-------------------------+ | 2023-02-03 00:00:00 UTC | 46.5 | true | 33.769587937313183 | 40.7478502941026 | 0.97434506593220793 | 10.1395835 | 1.6895835 | +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
Pembersihan
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.