Melakukan deteksi anomali dengan model perkiraan deret waktu multi-variasi

Untuk memberikan masukan atau meminta dukungan terkait fitur ini, kirim email ke bqml-feedback@google.com.

Tutorial ini menunjukkan cara melakukan tugas-tugas berikut:

Tutorial ini menggunakan tabel berikut dari set data epa_historical_air_quality publik, yang berisi informasi PM 2,5, suhu, dan kecepatan angin harian yang dikumpulkan dari beberapa kota di AS:

Izin yang diperlukan

  • Untuk membuat set data, Anda memerlukan izin IAM bigquery.datasets.create.
  • Untuk membuat resource koneksi, Anda memerlukan izin berikut:

    • bigquery.connections.create
    • bigquery.connections.get
  • Untuk membuat model, Anda memerlukan izin berikut:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Untuk menjalankan inferensi, Anda memerlukan izin berikut:

    • bigquery.models.getData
    • bigquery.jobs.create

Untuk mengetahui informasi lebih lanjut tentang peran dan izin IAM di BigQuery, baca Pengantar IAM.

Biaya

Dalam dokumen ini, Anda menggunakan komponen Google Cloud yang dapat ditagih berikut:

  • BigQuery: Anda akan dikenai biaya untuk data yang diproses di BigQuery.

Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda, gunakan kalkulator harga. Pengguna baru Google Cloud mungkin memenuhi syarat untuk mendapatkan uji coba gratis.

Untuk informasi lebih lanjut, lihat Harga BigQuery.

Sebelum memulai

  1. Login ke akun Google Cloud Anda. Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa produk kami dalam skenario dunia nyata. Pelanggan baru juga mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.
  2. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.

    Buka pemilih project

  3. Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.

  4. Aktifkan API BigQuery.

    Mengaktifkan API

  5. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.

    Buka pemilih project

  6. Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.

  7. Aktifkan API BigQuery.

    Mengaktifkan API

Membuat set data

Buat set data BigQuery untuk menyimpan model ML Anda:

  1. Di konsol Google Cloud, buka halaman BigQuery.

    Buka halaman BigQuery

  2. Di panel Explorer, klik nama project Anda.

  3. Klik View actions > Create dataset.

    Buat set data.

  4. Di halaman Create dataset, lakukan hal berikut:

    • Untuk Dataset ID, masukkan bqml_tutorial.

    • Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).

      Set data publik disimpan di US multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.

    • Jangan ubah setelan default yang tersisa, lalu klik Create dataset.

      Halaman Create dataset.

Menyiapkan data pelatihan

Data PM2,5, suhu, dan kecepatan angin berada di tabel terpisah. Buat tabel bqml_tutorial.seattle_air_quality_daily yang berisi data pelatihan dengan menggabungkan data dalam tabel publik ini. bqml_tutorial.seattle_air_quality_daily berisi kolom berikut:

  • date: tanggal pengamatan
  • PM2.5: nilai PM 2,5 rata-rata untuk setiap hari
  • wind_speed: kecepatan angin rata-rata untuk setiap hari
  • temperature: suhu tertinggi setiap hari

Tabel baru memiliki data harian dari 11 Agustus 2009 hingga 31 Januari 2022.

  1. Buka halaman BigQuery.

    Buka BigQuery

  2. Di panel editor SQL, jalankan pernyataan SQL berikut:

    CREATE TABLE `bqml_tutorial.seattle_air_quality_daily`
    AS
    WITH
      pm25_daily AS (
        SELECT
          avg(arithmetic_mean) AS pm25, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
        WHERE
          city_name = 'Seattle'
          AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass'
        GROUP BY date_local
      ),
      wind_speed_daily AS (
        SELECT
          avg(arithmetic_mean) AS wind_speed, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.wind_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant'
        GROUP BY date_local
      ),
      temperature_daily AS (
        SELECT
          avg(first_max_value) AS temperature, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature'
        GROUP BY date_local
      )
    SELECT
      pm25_daily.date AS date, pm25, wind_speed, temperature
    FROM pm25_daily
    JOIN wind_speed_daily USING (date)
    JOIN temperature_daily USING (date)

Membuat model

Buat model deret waktu multi-variasi menggunakan data dari bqml_tutorial.seattle_air_quality_daily sebagai data pelatihan.

  1. Buka halaman BigQuery.

    Buka BigQuery

  2. Di panel editor SQL, jalankan pernyataan SQL berikut:

    CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model`
      OPTIONS (
        model_type = 'ARIMA_PLUS_XREG',
        auto_arima=TRUE,
        time_series_data_col = 'temperature',
        time_series_timestamp_col = 'date'
        )
    AS
    SELECT
      *
    FROM
      `bqml_tutorial.seattle_air_quality_daily`;

    Kueri memerlukan waktu beberapa detik untuk diselesaikan, setelah itu model arimax_model akan muncul dalam set data bqml_tutorial di panel Explorer.

    Karena kueri ini menggunakan pernyataan CREATE MODEL untuk membuat model, tidak ada hasil kueri.

Melakukan deteksi anomali pada data historis

Jalankan deteksi anomali terhadap data historis yang Anda gunakan untuk melatih model.

  1. Buka halaman BigQuery.

    Buka BigQuery

  2. Di panel editor SQL, jalankan pernyataan SQL berikut:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold)
      )
    ORDER BY
      date ASC;

    Hasilnya akan terlihat seperti berikut:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-11 00:00:00 UTC | 70.1        | false      | 67.65880237416745  | 72.541197625832538 | 0                   |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-12 00:00:00 UTC | 73.4        | false      | 71.715603233887791 | 76.597998485552878 | 0.20589853827304627 |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-13 00:00:00 UTC | 64.6        | true       | 67.741606808079425 | 72.624002059744512 | 0.94627126678202522 |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    

Melakukan deteksi anomali pada data baru

Jalankan deteksi anomali terhadap data historis yang Anda gunakan untuk melatih model.

  1. Buka halaman BigQuery.

    Buka BigQuery

  2. Di panel editor SQL, jalankan pernyataan SQL berikut:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold),
       (
         SELECT
           *
         FROM
           UNNEST(
             [
               STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64>
               ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0),
               ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5),
               ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5),
               ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0),
               ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0),
               ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5),
               ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5),
               ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5),
               ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5),
               ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5)
             ]
           )
         )
       );

    Hasilnya akan terlihat seperti berikut:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability | pm25       | wind_speed |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-01 00:00:00 UTC | 44.0        | true       | 36.917405956304407 | 41.79980120796948  | 0.890904731626234   | 8.8166665  | 1.6525     |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-02 00:00:00 UTC | 40.5        | false      | 34.622436643607685 | 40.884690866417984 | 0.53985850962605064 | 11.8354165 | 1.558333   |
    +--------------------------------------------------------------------------------------------------------------------+-------------------------+
    | 2023-02-03 00:00:00 UTC | 46.5        | true       | 33.769587937313183 | 40.7478502941026   | 0.97434506593220793 | 10.1395835 | 1.6895835  |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
    

Pembersihan

  1. Di konsol Google Cloud, buka halaman Manage resource.

    Buka Manage resource

  2. Pada daftar project, pilih project yang ingin Anda hapus, lalu klik Delete.
  3. Pada dialog, ketik project ID, lalu klik Shut down untuk menghapus project.