이 문서에서는 테이블 탐색기를 사용하여 테이블 데이터를 검사하고 데이터 탐색 쿼리를 만드는 방법을 보여줍니다.
테이블 탐색기 정보
테이블 탐색기는 테이블 데이터를 시각적으로 탐색하고 선택한 테이블 필드를 기반으로 쿼리를 만들 수 있는 자동화된 방법을 제공합니다.
테이블 탐색기에서 검사할 테이블 필드를 선택합니다.
한 번에 최대 10개의 테이블 필드를 선택할 수 있습니다.
테이블 탐색기는 선택한 필드를 count 열순으로 정렬된 각 필드의 가장 일반적인 값 최대 10개 목록이 포함된 양방향 카드로 표시합니다. 자세히 살펴볼 필드와 고유한 값을 선택하여 카드와 상호작용할 수 있습니다.
테이블 탐색기는 선택사항을 기반으로 데이터 탐색 쿼리를 만듭니다.
이 쿼리를 쿼리 편집기의 새 쿼리에 복사하거나 테이블 탐색기에서 쿼리를 적용할 수 있습니다. 쿼리를 적용하면 테이블 탐색기가 쿼리를 실행하고 표시된 카드를 쿼리 결과로 새로고침합니다. 테이블 데이터 탐색을 계속하려면 새로고침한 카드에서 더 많은 필드 또는 값을 선택합니다.
제한사항
테이블 탐색기는 BigQuery 테이블, BigLake 테이블, 외부 테이블, 뷰에 사용할 수 있습니다.
테이블 탐색기를 사용하면 한 번에 하나의 테이블을 탐색할 수 있습니다. 이 기능은 여러 테이블을 동시에 탐색하거나 교차 테이블 작업(예: JOIN 작업)을 생성하는 것을 지원하지 않습니다.
테이블 탐색기는 테이블 필드 및 고유한 값 선택을 직접 반영하는 SQL 쿼리를 만듭니다. 테이블 탐색기에서 만든 쿼리를 실행하거나 쿼리 편집기에서 수동으로 수정할 수 있습니다.
테이블 탐색기는 SQL 쿼리를 생성, 완료 또는 설명하는 AI 기반 지원을 제공하지 않습니다.
열 수준 액세스 제어(ACL) 또는 제한된 사용자 권한이 있는 테이블의 테이블 데이터를 탐색하고 쿼리를 생성하려면 선택한 모든 필드에 대한 읽기 액세스 권한이 있어야 합니다. 생성된 쿼리를 실행하려면 충분한 권한이 있어야 합니다.
가격 책정
테이블 탐색기는 선택한 테이블 필드와 고유한 값을 기반으로 쿼리를 실행하여 테이블 탐색 결과를 표시합니다.
이러한 쿼리에는 컴퓨팅 가격 책정 요금이 발생합니다. 테이블 탐색기에는 테이블 필드 선택을 확인하고 쿼리 실행을 트리거하기 전에 처리될 각 쿼리의 데이터 양이 표시됩니다.
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[[["\u003cp\u003eTable Explorer provides a visual and automated way to examine table data and create queries by selecting fields and values.\u003c/p\u003e\n"],["\u003cp\u003eUsers can select up to 10 table fields at a time, and the tool displays common values and generates a query based on these selections.\u003c/p\u003e\n"],["\u003cp\u003eTable Explorer is available for BigQuery tables, BigLake tables, external tables, and views, but is limited to exploring one table at a time, without support for cross-table operations.\u003c/p\u003e\n"],["\u003cp\u003eUsing Table Explorer involves compute pricing charges, as queries are run based on the user's selection of fields and values, and users must have specific IAM roles, including BigQuery Job User and BigQuery Data Viewer.\u003c/p\u003e\n"],["\u003cp\u003eTo explore data with column-level access control, users must have read access to all selected fields, and the tool doesn't have AI-powered assistance for generating, completing, or explaining SQL queries.\u003c/p\u003e\n"]]],[],null,["Create queries with table explorer\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nTo request support or provide feedback for this feature, email\n[bq-studio-product-team@google.com](mailto:bq-studio-product-team@google.com).\n\nThis document shows you how to use table explorer to examine table data\nand create data exploration queries.\n\nAbout table explorer\n\nTable explorer offers an automated way to visually explore table data and\ncreate queries based on your selection of table fields.\n\nIn table explorer, you select table fields to examine.\nYou can select up to 10 table fields at a time.\n\nTable explorer displays the selected fields\nas interactive cards with the list of up to 10 most common values for\neach field, sorted by the `count` column. You can interact with the cards by\nselecting fields and distinct values which you want to examine more closely.\nTable explorer creates a data exploration query based on your selection.\n\nYou can copy this query into a new query in query editor,\nor apply the query in table explorer. When you apply the query, table explorer\nruns it and refreshes the displayed cards with query results. To continue table\ndata exploration, select more fields or values from the refreshed cards.\n\nLimitations\n\n- Table explorer is available for BigQuery tables, BigLake tables, external tables, and views.\n- Table explorer lets you explore a single table at a time. The feature does not support simultaneous exploration of multiple tables or generating cross-table operations, for example, `JOIN` operations.\n- Table explorer creates SQL queries that directly reflect your selection of table fields and distinct values. You can execute queries created by table explorer or manually edit them in the query editor. Table explorer does not provide AI-powered assistance to generate, complete, or explain SQL queries.\n- To explore table data and generate queries for tables with column-level access control (ACLs) or restricted user permissions, you must have read access for all selected fields. To run the generated queries, you must have sufficient [permissions](#roles).\n\nPricing\n\nTable explorer runs queries based on your selection of table fields\nand distinct values to display table exploration results.\nThese queries incur compute pricing charges. Table explorer displays the\namount of data that will be processed for each\nquery before you confirm your selection of table fields,\ntriggering the query execution.\n\nYou can also incur compute charges\nif you run a query generated by table explorer.\n\nFor more information about BigQuery compute pricing, see\n[Pricing](/bigquery/pricing).\n\nBefore you begin\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the BigQuery API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=bigquery.googleapis.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the BigQuery API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=bigquery.googleapis.com)\n\n\u003cbr /\u003e\n\nRequired roles and permissions\n\n\nTo get the permissions that\nyou need to view table data and generate queries with table explorer,\n\nask your administrator to grant you the\nfollowing IAM roles:\n\n- [BigQuery Job User](/iam/docs/roles-permissions/bigquery#bigquery.jobUser) (`roles/bigquery.jobUser`) on the project.\n- [BigQuery Data Viewer](/iam/docs/roles-permissions/bigquery#bigquery.dataViewer) (`roles/bigquery.dataViewer`) on all tables and views that you want to explore.\n\n\nFor more information about granting roles, see [Manage access to projects, folders, and organizations](/iam/docs/granting-changing-revoking-access).\n\n\nThese predefined roles contain\n\nthe permissions required to view table data and generate queries with table explorer. To see the exact permissions that are\nrequired, expand the **Required permissions** section:\n\n\nRequired permissions\n\nThe following permissions are required to view table data and generate queries with table explorer:\n\n- ` bigquery.jobs.create` on the project from which the query is being run, regardless of where the data is stored.\n- ` bigquery.tables.getData` on all tables and views that you want to explore.\n\n\nYou might also be able to get\nthese permissions\nwith [custom roles](/iam/docs/creating-custom-roles) or\nother [predefined roles](/iam/docs/roles-overview#predefined).\n\nFor more information about BigQuery Identity and Access Management (IAM),\nsee [Access control with IAM](/bigquery/docs/access-control).\n\nExplore data in a table to create a query\n\nTo explore table data and create a query based on your selection of table\nfields and values, follow these steps:\n\n1. In the Google Cloud console, go to BigQuery Studio.\n\n [Go to BigQuery Studio](https://console.cloud.google.com/bigquery)\n2. In the **Explorer** pane, select the table for which you want to create\n a query.\n\n3. Click the **Table explorer** tab, and then click **Select fields**.\n\n4. In the **Select fields** pane, select up to 10 table fields to explore.\n\n5. For a partitioned table, in the **Partitioning filter** section,\n set a custom partitioning filter. Partition filters can reduce the billable\n compute when exploring tables.\n\n 1. Select **Apply custom partitioning filter**.\n\n 2. In the displayed settings fields, configure the partitioning filter.\n\n Display of filter settings depends on the partition type of the table:\n hour, day, month, year, or range.\n6. Click **Save**.\n\n When you click **Save** , BigQuery runs a query to\n display common values for the selected fields, which incurs charges.\n You can see the amount of data which will be processed at the top of the\n **Select fields** pane.\n\n Table explorer displays the selected fields as cards in a list of up to\n the ten most common values sorted by the `Count` column.\n In the **Generated Query** section, you can see a query\n which you can run to show the same data.\n7. Optional: To modify your results, you can try the following:\n\n 1. In the displayed selected field cards, select distinct values to further filter the data.\n 2. To revert all changes, click **Reset**.\n 3. In the **Generated Query** section, click **Copy to query** to copy the generated code into a new, untitled query in the query editor. In the newly created query tab, you can edit, run, and manage the query.\n8. To run the generated query, click **Apply**.\n\n BigQuery executes the generated query and refreshes\n displayed cards with results of the query.\n9. To continue table exploration, select new fields or distinct values from\n the refreshed displayed cards.\n\nTroubleshooting \n\n Access Denied: Project [project_id]: User does not have bigquery.jobs.create\n permission in project [project_id].\n\nThis error occurs when a principal lacks permission to create a query jobs in the project.\n\n**Resolution** : An administrator must grant you the `bigquery.jobs.create`\npermission on the project you are querying. This permission is required in\naddition to any permission required to access the queried data.\n\nFor more information about BigQuery permissions, see\n[Access control with IAM](/bigquery/docs/access-control).\n\nWhat's next\n\n- Learn how to [explore your data by generating data insights](/bigquery/docs/data-insights).\n- Learn how to [write queries with Gemini assistance in BigQuery](/bigquery/docs/write-sql-gemini).\n- Learn how to iterate on query results with natural language questions by using [data canvas](/bigquery/docs/data-canvas)."]]