Bilder mit der Funktion ML.ANNOTATE_IMAGE annotieren

In diesem Dokument wird beschrieben, wie Sie die Funktion ML.ANNOTATE_IMAGE mit einem Remote-Modell verwenden, um Bilder aus einer Objekttabelle zu annotieren.

Erforderliche Berechtigungen

  • Zum Erstellen einer Verbindung benötigen Sie die Mitgliedschaft in der folgenden Rolle:

    • roles/bigquery.connectionAdmin
  • Zum Erteilen von Berechtigungen für das Dienstkonto der Verbindung benötigen Sie die folgende Berechtigung:

    • resourcemanager.projects.setIamPolicy
  • Zum Erstellen des Modells mit BigQuery ML benötigen Sie die folgenden Berechtigungen:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:

    • bigquery.tables.getData für die Objekttabelle
    • bigquery.models.getData für das Modell
    • bigquery.jobs.create

Vorbereitung

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.

    Enable the APIs

Verbindung herstellen

Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie das Dienstkonto der Verbindung ab.

Wählen Sie eine der folgenden Optionen aus:

Console

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Klicken Sie auf Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.

  3. Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.

  4. Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.

  5. Klicken Sie auf Verbindung erstellen.

  6. Klicken Sie auf Zur Verbindung.

  7. Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.

bq

  1. Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Der Parameter --project_id überschreibt das Standardprojekt.

    Ersetzen Sie dabei Folgendes:

    • REGION: Ihre Verbindungsregion
    • PROJECT_ID: Ihre Google Cloud-Projekt-ID
    • CONNECTION_ID: eine ID für Ihre Verbindung

    Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.

    Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    Die Ausgabe sieht in etwa so aus:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Verwenden Sie die Ressource google_bigquery_connection:

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

Im folgenden Beispiel wird eine Cloud-Ressourcenverbindung mit dem Namen my_cloud_resource_connection in der Region US erstellt:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

Führen Sie die Schritte in den folgenden Abschnitten aus, um Ihre Terraform-Konfiguration auf ein Google Cloud-Projekt anzuwenden.

Cloud Shell vorbereiten

  1. Rufen Sie Cloud Shell auf.
  2. Legen Sie das Google Cloud-Standardprojekt fest, auf das Sie Ihre Terraform-Konfigurationen anwenden möchten.

    Sie müssen diesen Befehl nur einmal pro Projekt und in jedem beliebigen Verzeichnis ausführen.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Umgebungsvariablen werden überschrieben, wenn Sie in der Terraform-Konfigurationsdatei explizite Werte festlegen.

Verzeichnis vorbereiten

Jede Terraform-Konfigurationsdatei muss ein eigenes Verzeichnis haben (auch als Stammmodul bezeichnet).

  1. Erstellen Sie in Cloud Shell ein Verzeichnis und eine neue Datei in diesem Verzeichnis. Der Dateiname muss die Erweiterung .tf haben, z. B. main.tf. In dieser Anleitung wird die Datei als main.tf bezeichnet.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. Wenn Sie einer Anleitung folgen, können Sie den Beispielcode in jedem Abschnitt oder Schritt kopieren.

    Kopieren Sie den Beispielcode in das neu erstellte main.tf.

    Kopieren Sie optional den Code aus GitHub. Dies wird empfohlen, wenn das Terraform-Snippet Teil einer End-to-End-Lösung ist.

  3. Prüfen und ändern Sie die Beispielparameter, die auf Ihre Umgebung angewendet werden sollen.
  4. Speichern Sie die Änderungen.
  5. Initialisieren Sie Terraform. Dies ist nur einmal für jedes Verzeichnis erforderlich.
    terraform init

    Fügen Sie optional die Option -upgrade ein, um die neueste Google-Anbieterversion zu verwenden:

    terraform init -upgrade

Änderungen anwenden

  1. Prüfen Sie die Konfiguration und prüfen Sie, ob die Ressourcen, die Terraform erstellen oder aktualisieren wird, Ihren Erwartungen entsprechen:
    terraform plan

    Korrigieren Sie die Konfiguration nach Bedarf.

  2. Wenden Sie die Terraform-Konfiguration an. Führen Sie dazu den folgenden Befehl aus und geben Sie yes an der Eingabeaufforderung ein:
    terraform apply

    Warten Sie, bis Terraform die Meldung „Apply complete“ anzeigt.

  3. Öffnen Sie Ihr Google Cloud-Projekt, um die Ergebnisse aufzurufen. Rufen Sie in der Google Cloud Console Ihre Ressourcen in der Benutzeroberfläche auf, um sicherzustellen, dass Terraform sie erstellt oder aktualisiert hat.

Zugriff auf das Dienstkonto gewähren

Wählen Sie eine der folgenden Optionen aus:

Console

  1. Zur Seite IAM & Verwaltung.

    IAM & Verwaltung aufrufen

  2. Klicken Sie auf Hinzufügen.

    Das Dialogfeld Principals hinzufügen wird geöffnet.

  3. Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.

  4. Wählen Sie im Feld Rolle auswählen die Option Dienstnutzung und dann Nutzer der Dienstnutzung aus.

  5. Klicken Sie auf Weitere Rolle hinzufügen.

  6. Wählen Sie im Feld Rolle auswählen die Option BigQuery aus und wählen Sie dann BigQuery Connection User aus.

  7. Klicken Sie auf Speichern.

gcloud

Führen Sie den Befehl gcloud projects add-iam-policy-binding aus:

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None

Dabei gilt:

  • PROJECT_NUMBER: Ihre Projektnummer.
  • MEMBER: Die Dienstkonto-ID, die Sie zuvor kopiert haben.

Wird die Berechtigung nicht erteilt, wird ein Fehler ausgegeben.

Objekttabelle erstellen

Erstellen Sie eine Objekttabelle mit Bildinhalten. Mit der Objekttabelle können Sie die Bilder analysieren, ohne sie aus Cloud Storage zu verschieben.

Der von der Objekttabelle verwendete Cloud Storage-Bucket sollte sich im selben Projekt befinden, in dem Sie das Modell erstellen und die Funktion ML.ANNOTATE_IMAGE aufrufen möchten. Wenn Sie die ML.ANNOTATE_IMAGE-Funktion in einem anderen Projekt als dem aufrufen möchten, das den von der Objekttabelle verwendeten Cloud Storage-Bucket enthält, müssen Sie dem Dienstkonto die Rolle "Storage Admin" auf Bucket-Ebene zuweisen.

Modell erstellen

Erstellen Sie ein Remote-Modell mit einem REMOTE_SERVICE_TYPE von CLOUD_AI_VISION_V1:

CREATE OR REPLACE MODEL
`PROJECT_ID.DATASET_ID.MODEL_NAME`
REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID
OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');

Dabei gilt:

  • PROJECT_ID: Ihre Projekt-ID.
  • DATASET_ID ist die ID des Datasets, das das Modell enthalten soll. Dieses Dataset muss sich am selben Standort wie die von Ihnen verwendete Verbindung befinden.
  • MODEL_NAME ist der Name des Modells.
  • REGION ist die Region, die von der Verbindung verwendet wird.
  • CONNECTION_ID: die Verbindungs-ID, z. B. myconnection.

    Wenn Sie sich Verbindungsdetails in der Google Cloud Console ansehen, ist die Verbindungs-ID der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B. projects/myproject/locations/connection_location/connections/myconnection.

Bilder annotieren

Bilder mit der Funktion ML.ANNOTATE_IMAGE annotieren:

SELECT *
FROM ML.ANNOTATE_IMAGE(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME,
  STRUCT(['FEATURE_NAME' [,...]] AS vision_features)
);

Ersetzen Sie Folgendes:

  • PROJECT_ID: Ihre Projekt-ID.
  • DATASET_ID ist die ID des Datasets, das das Modell enthält.
  • MODEL_NAME ist der Name des Modells.
  • OBJECT_TABLE_NAME ist der Name der Objekttabelle, die die URIs der Bilder enthält, die annotiert werden sollen.
  • FEATURE_NAME ist der Name eines unterstützten Cloud Vision API-Features

Beispiel 1

Im folgenden Beispiel sind die in den Bildern gezeigten Elemente beschriftet:

SELECT *
FROM ML.ANNOTATE_IMAGE(
  MODEL `myproject.mydataset.myvisionmodel`,
  TABLE myproject.mydataset.image_table,
  STRUCT(['label_detection'] AS vision_features)
);

Beispiel 2

Im folgenden Beispiel werden alle Gesichter in den Bildern erkannt und Bildattribute wie dominante Farben zurückgegeben:

SELECT *
FROM ML.ANNOTATE_IMAGE(
  MODEL `myproject.mydataset.myvisionmodel`,
  TABLE myproject.mydataset.image_table,
  STRUCT(['face_detection', 'image_properties'] AS vision_features)
);

Nächste Schritte