Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Conecte seu ambiente de desenvolvimento integrado ao BigQuery usando a MCP Toolbox
Neste guia, mostramos como usar a MCP Toolbox para bancos de dados e conectar sua instância do BigQuery a vários ambientes de desenvolvimento integrado (IDEs) e ferramentas para desenvolvedores. Ele usa o Protocolo de contexto do modelo (MCP), um protocolo aberto para conectar modelos de linguagem grandes (LLMs) a fontes de dados como o BigQuery. Assim, você pode executar consultas SQL e interagir com seu projeto diretamente nas ferramentas atuais.
Este guia demonstra o processo de conexão para os seguintes IDEs:
Configure os papéis e as permissões necessárias para concluir essa tarefa. Você vai precisar da função Usuário do BigQuery (roles/bigquery.user), da função Leitor de dados do BigQuery (roles/bigquery.dataViewer) ou de permissões equivalentes do IAM para se conectar à instância.
Faça o download da versão mais recente da MCP Toolbox como um binário. Selecione o binário correspondente ao seu sistema operacional e à arquitetura da CPU. Use a versão V0.7.0 ou mais recente da caixa de ferramentas do MCP:
Observação:a variável de ambiente BIGQUERY_PROJECT especifica o ID do projeto Google Cloud padrão para uso da caixa de ferramentas do MCP. Todas as operações do BigQuery, como a execução de consultas, são realizadas nesse projeto.
Usar as ferramentas
Sua ferramenta de IA agora está conectada ao BigQuery usando o MCP. Peça ao assistente de IA para listar tabelas, criar uma tabela ou definir e executar outras instruções SQL.
As seguintes ferramentas estão disponíveis para o LLM:
ask_data_insights: realiza análises de dados, gera insights ou responde a perguntas complexas sobre o conteúdo das tabelas do BigQuery.
execute_sql: executa uma instrução SQL.
forecast: prevê dados de série temporal.
get_dataset_info: recebe metadados do conjunto de dados.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[],[],null,["# Connect your IDE to BigQuery using MCP Toolbox\n==============================================\n\nThis guide shows you how to use the [MCP Toolbox for Databases](https://github.com/googleapis/genai-toolbox) to connect your BigQuery instance to a variety of Integrated Development Environments (IDEs) and developer tools. It uses the [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction), an open protocol for connecting large language models (LLMs) to data sources like BigQuery, allowing you to run SQL queries and interact with your project directly from your existing tools.\n\nThis guide demonstrates the connection process for the following IDEs:\n\n- [Cursor](#configure-your-mcp-client)\n- [Windsurf](#configure-your-mcp-client) (formerly Codeium)\n- [Visual Studio Code](#configure-your-mcp-client) (Copilot)\n- [Cline](#configure-your-mcp-client) (VS Code extension)\n- [Claude desktop](#configure-your-mcp-client)\n- [Claude code](#configure-your-mcp-client)\n\nBefore you begin\n----------------\n\n1. In the Google Cloud console, on the [project selector page](https://console.cloud.google.com/projectselector2/home/dashboard), select or create a Google Cloud project.\n\n2. [Make sure that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n3. [Enable the BigQuery API in the Google Cloud project](https://console.cloud.google.com/flows/enableapi?apiid=bigquery.googleapis.com&redirect=https://console.cloud.google.com).\n\n4. Configure the required roles and permissions to complete this task. You will need the [BigQuery User](/bigquery/docs/access-control) role (`roles/bigquery.user`), the BigQuery Data Viewer role (`roles/bigquery.dataViewer`), or equivalent IAM permissions to connect to the instance.\n\n5. Configure [Application Default Credentials (ADC)](/docs/authentication/set-up-adc-local-dev-environment) for your environment.\n\nInstall the MCP Toolbox\n-----------------------\n\n1. Download the latest version of the MCP Toolbox as a binary. Select the [binary](https://github.com/googleapis/genai-toolbox/releases) corresponding to your operating system (OS) and CPU architecture. You must use MCP Toolbox version V0.7.0 or later:\n\n ### linux/amd64\n\n ```\n curl -O https://storage.googleapis.com/genai-toolbox/VERSION/linux/amd64/toolbox\n ```\n\n Replace \u003cvar translate=\"no\"\u003eVERSION\u003c/var\u003e with the MCP Toolbox\n version---for example `v0.7.0`.\n\n ### macOS darwin/arm64\n\n ```\n curl -O https://storage.googleapis.com/genai-toolbox/VERSION/darwin/arm64/toolbox\n ```\n\n Replace \u003cvar translate=\"no\"\u003eVERSION\u003c/var\u003e with the MCP Toolbox\n version---for example `v0.7.0`.\n\n ### macOS darwin/amd64\n\n ```\n curl -O https://storage.googleapis.com/genai-toolbox/VERSION/darwin/amd64/toolbox\n ```\n\n Replace \u003cvar translate=\"no\"\u003eVERSION\u003c/var\u003e with the MCP Toolbox\n version---for example `v0.7.0`.\n\n ### windows/amd64\n\n ```\n curl -O https://storage.googleapis.com/genai-toolbox/VERSION/windows/amd64/toolbox\n ```\n\n Replace \u003cvar translate=\"no\"\u003eVERSION\u003c/var\u003e with the MCP Toolbox\n version---for example `v0.7.0`.\n2. Make the binary executable:\n\n chmod +x toolbox\n\n3. Verify the installation:\n\n ./toolbox --version\n\nConfigure the MCP client\n------------------------\n\n### Claude code\n\n\u003cbr /\u003e\n\n1. Install [Claude Code](https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview). \n2. Create `.mcp.json` file in your project root, if it doesn't exist. \n3. Add the configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"mcpServers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\n### Claude desktop\n\n\u003cbr /\u003e\n\n1. Open [Claude Desktop](https://claude.ai/download) and navigate to **Settings** . \n2. In the **Developer** tab, click **Edit Config** to open the configuration file. \n3. Add the configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"mcpServers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\n4. Restart Claude Desktop. \n5. The new chat screen displays a hammer (MCP) icon with the new MCP server. \n\n\u003cbr /\u003e\n\n### Cline\n\n\u003cbr /\u003e\n\n1. Open [Cline](https://github.com/cline/cline) extension in VS Code and tap **MCP Servers** icon. \n2. Tap Configure MCP Servers to open the configuration file. \n3. Add the following configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"mcpServers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\nA green active status appears after the server connects successfully. \n\n### Cursor\n\n\u003cbr /\u003e\n\n1. Create the `.cursor` directory in your project root if it doesn't exist. \n2. Create the `.cursor/mcp.json` file if it doesn't exist and open it. \n3. Add the following configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"mcpServers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\n4. Open [Cursor](https://www.cursor.com/) and navigate to **Settings \\\u003e Cursor Settings \\\u003e MCP** . A green active status appears when the server connects. \n\n### Visual Studio Code (Copilot)\n\n\u003cbr /\u003e\n\n1. Open [VS Code](https://code.visualstudio.com/docs/copilot/overview) and create `.vscode` directory in your project root if it does not exist. \n2. Create the `.vscode/mcp.json` file if it doesn't exist, and open it. \n3. Add the following configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"servers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\n### Windsurf\n\n\u003cbr /\u003e\n\n1. Open [Windsurf](https://docs.codeium.com/windsurf) and navigate to Cascade assistant. \n2. Click the MCP icon, then click **Configure** to open the configuration file. \n3. Add the following configuration, replace the environment variables with your values, and save: \n\n```\n{\n \"mcpServers\": {\n \"bigquery\": {\n \"command\": \"./PATH/TO/toolbox\",\n \"args\": [\"--prebuilt\",\"bigquery\",\"--stdio\"],\n \"env\": {\n \"BIGQUERY_PROJECT\": \"PROJECT_ID\"\n }\n }\n }\n}\n```\n\nUse the tools\n-------------\n\nYour AI tool is now connected to BigQuery using MCP. Try asking your AI assistant to list tables, create a table, or define and execute other SQL statements.\n\nThe following tools are available to the LLM:\n\n- **execute_sql**: execute SQL statement\n- **get_dataset_info**: get dataset metadata\n- **get_table_info**: get table metadata\n- **list_dataset_ids**: list datasets\n- **list_table_ids**: list tables\n\n| **Note:** Prebuilt tools are pre-1.0, so expect some tool changes between versions. LLMs will adapt to the tools available, so this shouldn't affect most users."]]