Lee datos con la API de BigQuery mediante paginación

En este documento, se describe cómo leer datos de tablas y resultados de consultas con la API de BigQuery mediante la paginación.

Desplázate por los resultados mediante la API

Todos los métodos *collection*.list muestran resultados paginados en determinadas circunstancias. La propiedad maxResults limita la cantidad de resultados por página.

Método Criterios de paginación Valor maxResults predeterminado Valor maxResults máximo Valor maxFieldValues máximo
tabledata.list Muestra resultados paginados si el tamaño de la respuesta supera los 10 MB1 de datos o más de las filas de maxResults. Ilimitado Ilimitado Ilimitado
Todos los demás métodos *collection*.list Muestra resultados paginados si el tamaño de la respuesta supera las filas en maxResults, y también es inferior a los límites máximos. 10,000 Ilimitado 300,000

Si el resultado es mayor que el límite de bytes o campos, el resultado se corta para ajustarlo al límite. Si una fila supera el límite de bytes o campos, tabledata.list puede mostrar hasta 100 MB de datos1, que es coherente con el límite máximo de tamaño de fila para los resultados de la consulta. No hay un tamaño mínimo por página, y algunas páginas pueden mostrar más filas que otras.

1 El tamaño de la fila es aproximado, ya que se basa en la representación interna de los datos de la fila. El tamaño máximo de la fila se aplica durante ciertas etapas de la ejecución del trabajo de consulta.

jobs.getQueryResults puede mostrar 20 MB de datos, a menos que de forma explícita se solicite una cantidad mayor mediante la asistencia.

Una página es un subconjunto del número total de filas. Si tus resultados ocupan más de una página de datos, los datos tienen una propiedad pageToken. Para recuperar la página siguiente de resultados, haz otra llamada a list y, también, incluye el valor del token como un parámetro URL llamado pageToken.

El método tabledata.list, que se utiliza para desplazarse por los datos de la tabla, usa un valor de desplazamiento de fila o un token de página. Consulta la página sobre cómo explorar datos de tablas para obtener más información.

Realiza iteraciones en los resultados de las bibliotecas cliente

Las bibliotecas cliente de la nube controlan los detalles de bajo nivel de la paginación de las APIs y proporcionan una experiencia más similar al iterador que simplifica la interacción con los elementos individuales en las respuestas de la página.

Los siguientes ejemplos muestran la paginación a través de los datos de tablas de BigQuery.

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para C#.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.


using Google.Api.Gax;
using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;
using System.Linq;

public class BigQueryBrowseTable
{
    public void BrowseTable(
        string projectId = "your-project-id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        TableReference tableReference = new TableReference()
        {
            TableId = "shakespeare",
            DatasetId = "samples",
            ProjectId = "bigquery-public-data"
        };
        // Load all rows from a table
        PagedEnumerable<TableDataList, BigQueryRow> result = client.ListRows(
            tableReference: tableReference,
            schema: null
        );
        // Print the first 10 rows
        foreach (BigQueryRow row in result.Take(10))
        {
            Console.WriteLine($"{row["corpus"]}: {row["word_count"]}");
        }
    }
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQuery.TableDataListOption;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;

// Sample to directly browse a table with optional paging
public class BrowseTable {

  public static void runBrowseTable() {
    // TODO(developer): Replace these variables before running the sample.
    String table = "MY_TABLE_NAME";
    String dataset = "MY_DATASET_NAME";
    browseTable(dataset, table);
  }

  public static void browseTable(String dataset, String table) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Identify the table itself
      TableId tableId = TableId.of(dataset, table);

      // Page over 100 records. If you don't need pagination, remove the pageSize parameter.
      TableResult result = bigquery.listTableData(tableId, TableDataListOption.pageSize(100));

      // Print the records
      result
          .iterateAll()
          .forEach(
              row -> {
                row.forEach(fieldValue -> System.out.print(fieldValue.toString() + ", "));
                System.out.println();
              });

      System.out.println("Query ran successfully");
    } catch (BigQueryException e) {
      System.out.println("Query failed to run \n" + e.toString());
    }
  }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Go.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

La biblioteca cliente de Cloud para Go se pagina automáticamente de forma predeterminada, por lo que no necesitas implementar la paginación, por ejemplo:

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// browseTable demonstrates reading data from a BigQuery table directly without the use of a query.
// For large tables, we also recommend the BigQuery Storage API.
func browseTable(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	table := client.Dataset(datasetID).Table(tableID)
	it := table.Read(ctx)
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

La biblioteca cliente de Cloud para Node.js se pagina automáticamente de forma predeterminada, por lo que no necesitas implementar la paginación, por ejemplo:

// Import the Google Cloud client library using default credentials
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function browseTable() {
  // Retrieve a table's rows using manual pagination.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset'; // Existing dataset
  // const tableId = 'my_table'; // Table to create

  const query = `SELECT name, SUM(number) as total_people
    FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
    GROUP BY name 
    ORDER BY total_people 
    DESC LIMIT 100`;

  // Create table reference.
  const dataset = bigquery.dataset(datasetId);
  const destinationTable = dataset.table(tableId);

  // For all options, see https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationquery
  const queryOptions = {
    query: query,
    destination: destinationTable,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(queryOptions);

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/jobs/getQueryResults
  const queryResultsOptions = {
    // Retrieve zero resulting rows.
    maxResults: 0,
  };

  // Wait for the job to finish.
  await job.getQueryResults(queryResultsOptions);

  function manualPaginationCallback(err, rows, nextQuery) {
    rows.forEach(row => {
      console.log(`name: ${row.name}, ${row.total_people} total people`);
    });

    if (nextQuery) {
      // More results exist.
      destinationTable.getRows(nextQuery, manualPaginationCallback);
    }
  }

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list
  const getRowsOptions = {
    autoPaginate: false,
    maxResults: 20,
  };

  // Retrieve all rows.
  destinationTable.getRows(getRowsOptions, manualPaginationCallback);
}
browseTable();

PHP

Antes de probar este ejemplo, sigue las instrucciones de configuración para PHP incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para PHP.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

La paginación se realiza de forma automática en las bibliotecas cliente de Cloud para PHP mediante la función de generador rows, que recupera la siguiente página de resultados durante la iteración.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
// $projectId = 'The Google project ID';
// $datasetId = 'The BigQuery dataset ID';
// $tableId   = 'The BigQuery table ID';
// $maxResults = 10;

$maxResults = 10;
$startIndex = 0;

$options = [
    'maxResults' => $maxResults,
    'startIndex' => $startIndex
];
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table($tableId);
$numRows = 0;
foreach ($table->rows($options) as $row) {
    print('---');
    foreach ($row as $column => $value) {
        printf('%s: %s' . PHP_EOL, $column, $value);
    }
    $numRows++;
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

La biblioteca cliente de Cloud para Python se pagina automáticamente de forma predeterminada, por lo que no necesitas implementar la paginación, por ejemplo:


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to browse data rows.
# table_id = "your-project.your_dataset.your_table_name"

# Download all rows from a table.
rows_iter = client.list_rows(table_id)  # Make an API request.

# Iterate over rows to make the API requests to fetch row data.
rows = list(rows_iter)
print("Downloaded {} rows from table {}".format(len(rows), table_id))

# Download at most 10 rows.
rows_iter = client.list_rows(table_id, max_results=10)
rows = list(rows_iter)
print("Downloaded {} rows from table {}".format(len(rows), table_id))

# Specify selected fields to limit the results to certain columns.
table = client.get_table(table_id)  # Make an API request.
fields = table.schema[:2]  # First two columns.
rows_iter = client.list_rows(table_id, selected_fields=fields, max_results=10)
rows = list(rows_iter)
print("Selected {} columns from table {}.".format(len(rows_iter.schema), table_id))
print("Downloaded {} rows from table {}".format(len(rows), table_id))

# Print row data in tabular format.
rows = client.list_rows(table, max_results=10)
format_string = "{!s:<16} " * len(rows.schema)
field_names = [field.name for field in rows.schema]
print(format_string.format(*field_names))  # Prints column headers.
for row in rows:
    print(format_string.format(*row))  # Prints row data.

Ruby

Antes de probar este ejemplo, sigue las instrucciones de configuración para Ruby incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Ruby.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

La paginación se realiza de forma automática en las bibliotecas cliente de Cloud para Ruby mediante Table#data y Data#next.

require "google/cloud/bigquery"

def browse_table
  bigquery = Google::Cloud::Bigquery.new project_id: "bigquery-public-data"
  dataset  = bigquery.dataset "samples"
  table    = dataset.table "shakespeare"

  # Load all rows from a table
  rows = table.data

  # Load the first 10 rows
  rows = table.data max: 10

  # Print row data
  rows.each { |row| puts row }
end

Solicita páginas arbitrarias y evita llamadas redundantes a las listas

Cuando retrocedes la página o saltas a páginas arbitrarias con valores de pageToken almacenados en caché, es posible que los datos de tus páginas hayan cambiado desde la última vez que se vieron, aunque no hay un indicio claro de que así sea. Para mitigar este efecto, puedes usar la propiedad etag.

Cada método collection.list (excepto Tabledata) muestra una propiedad etag en el resultado. Esta propiedad genera un hash de los resultados de la página que se pueden usar para verificar si esta cambió desde la última solicitud. Cuando realizas una solicitud a BigQuery con un valor Etag, BigQuery compara el valor ETag con el valor de ETag que la API mostró y responde si esos valores coinciden. Puedes usar las ETag para evitar llamadas redundantes a las listas de la siguiente manera:

  • Muestra valores de lista si los valores cambiaron.

    Si solo deseas que se muestre una página con los valores de la lista si los valores cambiaron, puedes crear una llamada a la lista con un ETag almacenado con anterioridad mediante el encabezado HTTP "if-none-match". Si el ETag que proporcionas no coincide con el ETag en el servidor, BigQuery muestra una página de valores de lista nuevos. Si los ETags coinciden, BigQuery muestra un código de estado HTTP 304 Not Modified y ningún valor. Un ejemplo de esto podría ser una página web en la que los usuarios pueden completar, de manera periódica, información que se encuentra almacenada en BigQuery. Si no hay cambios en los datos, puedes evitar hacer llamadas redundantes a las listas en BigQuery mediante el encabezado if-none-match con ETags.

  • Muestra valores de lista si los valores no cambiaron.

    Si solo deseas que se muestre una página con los valores de la lista en caso de que los valores no hayan cambiado, puedes usar el encabezado HTTP "if-match". BigQuery hace coincidir los valores de los ETag y muestra la página de resultados si los resultados no han cambiado, o muestra un resultado 412 "Precondition Failed" si la página cambió.

Nota: A pesar de que los ETag son una excelente manera de evitar la realización de llamadas redundantes a las listas, puedes aplicar los mismos métodos para identificar si algún objeto cambió. Por ejemplo, puedes realizar una solicitud Get en una tabla específica y usar ETag para determinar si la tabla cambió antes de mostrar la respuesta completa.

Desplázate por los resultados de la consulta

Cada consulta escribe en una tabla de destino. Si no se proporciona una tabla de destino, la API de BigQuery propaga automáticamente la propiedad de tabla de destino mediante la referencia a una tabla anónima temporal.

API

Lee el campo jobs.config.query.destinationTable para determinar la tabla en la que se escribieron los resultados de la consulta. Llama a tabledata.list para leer los resultados de la consulta.

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;

// Sample to run query with pagination.
public class QueryPagination {

  public static void main(String[] args) {
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String query =
        "SELECT name, SUM(number) as total_people"
            + " FROM `bigquery-public-data.usa_names.usa_1910_2013`"
            + " GROUP BY name"
            + " ORDER BY total_people DESC"
            + " LIMIT 100";
    queryPagination(datasetName, tableName, query);
  }

  public static void queryPagination(String datasetName, String tableName, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query)
              // save results into a table.
              .setDestinationTable(tableId)
              .build();

      bigquery.query(queryConfig);

      TableResult results =
          bigquery.listTableData(tableId, BigQuery.TableDataListOption.pageSize(20));

      // First Page
      results
          .getValues()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,\n", val.toString())));

      while (results.hasNextPage()) {
        // Remaining Pages
        results = results.getNextPage();
        results
            .getValues()
            .forEach(row -> row.forEach(val -> System.out.printf("%s,\n", val.toString())));
      }

      System.out.println("Query pagination performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Para establecer la cantidad de filas que se muestran en cada página, usa un trabajo GetQueryResults y establece la opción pageSize del objeto QueryResultsOption que pasas, como se muestra en el siguiente ejemplo:

TableResult result = job.getQueryResults();
QueryResultsOption queryResultsOption = QueryResultsOption.pageSize(20);

TableResult result = job.getQueryResults(queryResultsOption);

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

// Import the Google Cloud client library using default credentials
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryPagination() {
  // Run a query and get rows using automatic pagination.

  const query = `SELECT name, SUM(number) as total_people
  FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
  GROUP BY name
  ORDER BY total_people DESC
  LIMIT 100`;

  // Run the query as a job.
  const [job] = await bigquery.createQueryJob(query);

  // Wait for job to complete and get rows.
  const [rows] = await job.getQueryResults();

  console.log('Query results:');
  rows.forEach(row => {
    console.log(`name: ${row.name}, ${row.total_people} total people`);
  });
}
queryPagination();

Python

El método QueryJob.result muestra un iterable de los resultados de la consulta. O, como alternativa:

  1. Lee la propiedad QueryJob.destination. Si la propiedad no está configurada, la API la establece en una referencia a una tabla anónima temporal.
  2. Obtén el esquema de la tabla con el método Client.get_table.
  3. Crea un iterable en todas las filas de la tabla de destino con el método Client.list_rows.

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

query = """
    SELECT name, SUM(number) as total_people
    FROM `bigquery-public-data.usa_names.usa_1910_2013`
    GROUP BY name
    ORDER BY total_people DESC
"""
query_job = client.query(query)  # Make an API request.
query_job.result()  # Wait for the query to complete.

# Get the destination table for the query results.
#
# All queries write to a destination table. If a destination table is not
# specified, the BigQuery populates it with a reference to a temporary
# anonymous table after the query completes.
destination = query_job.destination

# Get the schema (and other properties) for the destination table.
#
# A schema is useful for converting from BigQuery types to Python types.
destination = client.get_table(destination)

# Download rows.
#
# The client library automatically handles pagination.
print("The query data:")
rows = client.list_rows(destination, max_results=20)
for row in rows:
    print("name={}, count={}".format(row["name"], row["total_people"]))