Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Introduzione ai blocchi note
Questo documento fornisce un'introduzione ai
notebook Colab Enterprise
in BigQuery. Puoi utilizzare i blocchi note per completare
i flussi di lavoro di analisi e machine learning (ML) utilizzando SQL, Python e altri
pacchetti e API comuni. Notebooks offrono una migliore collaborazione e gestione
con le seguenti opzioni:
Condividi i blocchi note con utenti e gruppi specifici utilizzando
Identity and Access Management (IAM).
Esamina la cronologia delle versioni del notebook.
Ripristina o crea una ramificazione dalle versioni precedenti del blocco note.
Notebooks sono asset di codice di BigQuery Studio basati su Dataform.
Anche le query salvate sono asset di codice.
Tutti gli asset di codice vengono archiviati in una
regione predefinita. L'aggiornamento della regione predefinita modifica
la regione per tutti gli asset di codice creati dopo quel momento.
Le funzionalità dei notebook sono disponibili solo nella Google Cloud console.
Vantaggi
Notebooks in BigQuery offrono i seguenti vantaggi:
BigQuery DataFrames è
integrato nei blocchi note, senza necessità di configurazione. BigQuery DataFrames è
un'API Python che puoi utilizzare per analizzare i dati BigQuery su
scala utilizzando le API
pandas DataFrame
e
scikit-learn.
Un runtime del notebook è una macchina virtuale Compute Engine allocata a un
utente specifico per consentire l'esecuzione del codice in un notebook. Più notebook possono
condividere lo stesso runtime. Tuttavia, ogni runtime appartiene a un solo utente e non può
essere utilizzato da altri. I runtime dei notebook vengono creati in base al modello, che
in genere è definito dagli utenti con privilegi amministrativi. Puoi passare a un
runtime che utilizza un tipo di modello diverso in qualsiasi momento.
Sicurezza del notebook
Controlli l'accesso ai blocchi note utilizzando i ruoli IAM (Identity and Access Management). Per
maggiori informazioni, vedi
Concedere l'accesso ai blocchi note.
Per rilevare le vulnerabilità nei pacchetti Python che utilizzi nei notebook,
installa e utilizza
Notebook Security Scanner
(anteprima).
Aree geografiche supportate
BigQuery Studio ti consente di salvare, condividere e gestire le versioni dei notebook. La tabella seguente elenca le regioni in cui è disponibile BigQuery Studio:
Puoi monitorare l'utilizzo degli slot dei notebook BigQuery Studio visualizzando il report di fatturazione Cloud nella console Google Cloud . Nel report sulla fatturazione Cloud, applica un filtro con l'etichetta goog-bq-feature-type con il valore BQ_STUDIO_NOTEBOOK per visualizzare l'utilizzo e i costi degli slot del notebook BigQuery Studio.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eBigQuery notebooks facilitate analysis and machine learning workflows through SQL, Python, and other tools, offering enhanced collaboration features like sharing, version history, and branching.\u003c/p\u003e\n"],["\u003cp\u003eNotebooks are code assets within BigQuery Studio, powered by Dataform, and are integrated with BigQuery DataFrames for scalable data analysis using pandas and scikit-learn.\u003c/p\u003e\n"],["\u003cp\u003eNotebooks provide assistive code development through Gemini AI, auto-completion of SQL statements, and data visualization via matplotlib and seaborn libraries.\u003c/p\u003e\n"],["\u003cp\u003eNotebooks use Colab Enterprise runtimes, which are user-specific Compute Engine virtual machines that can be shared by multiple notebooks but not by multiple users.\u003c/p\u003e\n"],["\u003cp\u003eAccess to notebooks is controlled via Identity and Access Management (IAM), and pricing information for notebook runtimes and slot usage can be monitored via Cloud Billing reports.\u003c/p\u003e\n"]]],[],null,["# Introduction to notebooks\n=========================\n\nThis document provides an introduction to\n[Colab Enterprise notebooks](/colab/docs/introduction)\nin BigQuery. You can use notebooks to complete\nanalysis and machine learning (ML) workflows by using SQL, Python, and other\ncommon packages and APIs. Notebooks offer improved collaboration and management\nwith the following options:\n\n- Share notebooks with specific users and groups by using Identity and Access Management (IAM).\n- Review the notebook version history.\n- Revert to or branch from previous versions of the notebook.\n\nNotebooks are [BigQuery Studio](/bigquery/docs/query-overview#bigquery-studio)\ncode assets powered by [Dataform](/dataform/docs/overview).\n[Saved queries](/bigquery/docs/saved-queries-introduction) are also code assets.\nAll code assets are stored in a default\n[region](#supported_regions). Updating the default region changes\nthe region for all code assets created after that point.\n\nNotebook capabilities are available only in the Google Cloud console.\n\nBenefits\n--------\n\nNotebooks in BigQuery offer the following benefits:\n\n- [BigQuery DataFrames](/python/docs/reference/bigframes/latest) is integrated into notebooks, no setup required. BigQuery DataFrames is a Python API that you can use to analyze BigQuery data at scale by using the [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) and [scikit-learn](https://scikit-learn.org/stable/modules/classes.html) APIs.\n- Assistive code development powered by [Gemini generative AI](/bigquery/docs/write-sql-gemini).\n- Auto-completion of SQL statements, the same as in the BigQuery editor.\n- The ability to save, share, and manage versions of notebooks.\n- The ability to use [matplotlib](https://matplotlib.org/), [seaborn](https://seaborn.pydata.org/), and other popular libraries to visualize data at any point in your workflow.\n\nRuntime management\n------------------\n\nBigQuery uses\n[Colab Enterprise runtimes](/colab/docs/create-runtime) to run\nnotebooks.\n\nA notebook runtime is a Compute Engine virtual machine allocated to a\nparticular user to enable code execution in a notebook. Multiple notebooks can\nshare the same runtime. However, each runtime belongs to only one user and can't\nbe used by others. Notebook runtimes are created based on template, which are\ntypically defined by users with administrative privileges. You can change to a\nruntime that uses a different template type at any time.\n\nNotebook security\n-----------------\n\nYou control access to notebooks by using Identity and Access Management (IAM) roles. For\nmore information, see\n[Grant access to notebooks](/bigquery/docs/create-notebooks#grant_access_to_notebooks).\n\nTo detect vulnerabilities in Python packages that you use in your notebooks,\ninstall and use\n[Notebook Security Scanner](/security-command-center/docs/enable-notebook-security-scanner)\n([Preview](/products#product-launch-stages)).\n\nSupported regions\n-----------------\n\nBigQuery Studio lets you save, share, and manage versions of\nnotebooks. The following table lists the regions where BigQuery Studio is\navailable:\n\nPricing\n-------\n\nFor pricing information about BigQuery Studio notebooks, see [Notebook runtime pricing](/bigquery/pricing#external_services).\n\nMonitor slot usage\n------------------\n\nYou can monitor your BigQuery Studio notebook slot usage by viewing your [Cloud Billing report](/billing/docs/reports) in the Google Cloud console. In the Cloud Billing report, apply a filter with the label **goog-bq-feature-type** with the value **BQ_STUDIO_NOTEBOOK** to view slot usage and costs from BigQuery Studio notebook.\n\nTroubleshooting\n---------------\n\nFor more information, see [Troubleshoot Colab Enterprise](/colab/docs/troubleshooting).\n\nWhat's next\n-----------\n\n- Learn how to [create notebooks](/bigquery/docs/create-notebooks).\n- Learn how to [manage notebooks](/bigquery/docs/manage-notebooks)."]]