Forneça explicabilidade para o modelo, para esclarecer como determinados recursos influenciaram uma determinada previsão e também o modelo em geral.
Saiba mais sobre os componentes que compõe o modelo usando pesos de modelo.
Como é possível usar muitos tipos diferentes de modelos no BigQuery ML, as funções disponíveis para cada modelo variam. Para mais informações sobre
instruções e funções SQL compatíveis com cada tipo de modelo, consulte os seguintes
documentos:
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-09 UTC."],[[["\u003cp\u003eBigQuery ML enables the creation and operationalization of machine learning models using SQL over BigQuery data.\u003c/p\u003e\n"],["\u003cp\u003eModel development in BigQuery ML involves creating, preprocessing, tuning, evaluating, inferencing, and explaining models.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML supports both automatic and manual feature preprocessing via functions and the \u003ccode\u003eTRANSFORM\u003c/code\u003e clause.\u003c/p\u003e\n"],["\u003cp\u003eHyperparameter tuning is used to refine the model to better fit the training data.\u003c/p\u003e\n"],["\u003cp\u003eThe available functions vary between each type of model, detailed in the end-to-end user journey for each model.\u003c/p\u003e\n"]]],[],null,["# Model creation\n==============\n\nBigQuery ML lets you build and operationalize machine learning (ML)\nmodels over data in BigQuery by using SQL.\n\nA typical model development workflow in BigQuery ML looks similar\nto the following:\n\n1. Create the model using the [`CREATE MODEL` statement](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create).\n2. Perform feature preprocessing. Some preprocessing happens [automatically](/bigquery/docs/reference/standard-sql/bigqueryml-auto-preprocessing), plus you can use [manual preprocessing functions](/bigquery/docs/reference/standard-sql/bigqueryml-preprocessing-functions) inside the [`TRANSFORM` clause](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create#transform) to do additional preprocessing.\n3. Refine the model by performing [hyperparameter tuning](/bigquery/docs/hp-tuning-overview) to fit the model to the training data.\n4. [Evaluate the model](/bigquery/docs/evaluate-overview) to assess how it might perform on data outside of the training set, and also to compare it to other models if appropriate.\n5. [Perform inference](/bigquery/docs/inference-overview) to analyze data by using the model.\n6. Provide [explainability](/bigquery/docs/xai-overview) for the model, to clarify how particular features influenced a given prediction and also the model overall.\n7. Learn more about the components that comprize the model by using [model weights](/bigquery/docs/weights-overview).\n\nBecause you can use many different kinds of models in BigQuery ML,\nthe functions available for each model vary. See the\n[End-to-end user journey for each model](/bigquery/docs/e2e-journey) to see\nthe specific functions available for each model."]]