Make predictions with scikit-learn models in ONNX format

Open Neural Network Exchange (ONNX) provides a uniform format designed to represent any machine learning frameworks. BigQuery ML support for ONNX allows you to:

  • Train a model using your favorite framework.
  • Convert the model into ONNX model format. For more information, see Converting to ONNX format.
  • Import the ONNX model into BigQuery and make predictions using BigQuery ML.

This tutorial shows you how to import ONNX models trained with scikit-learn into a BigQuery dataset and use them to make predictions from a SQL query. You can import ONNX models using these interfaces:

For more information about importing ONNX models into BigQuery, including format and storage requirements, see The CREATE MODEL statement for importing ONNX models.

Objectives

In this tutorial, you will:

  • Create and train models with scikit-learn.
  • Convert the models to ONNX format using sklearn-onnx.
  • Import the ONNX models into BigQuery and make predictions.

Train a classification model with scikit-learn

Create and train a scikit-learn pipeline on the Iris dataset:

import numpy
from sklearn.datasets import load_iris
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier

data = load_iris()
X = data.data[:, :4]
y = data.target

ind = numpy.arange(X.shape[0])
numpy.random.shuffle(ind)
X = X[ind, :].copy()
y = y[ind].copy()

pipe = Pipeline([('scaler', StandardScaler()),
                ('clr', RandomForestClassifier())])
pipe.fit(X, y)

Convert the model into ONNX format and save

Use sklearn-onnx to convert the scikit-learn pipeline into an ONNX model named pipeline_rf.onnx:

from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType

# Disable zipmap as it is not supported in BigQuery ML.
options = {id(pipe): {'zipmap': False}}

# Define input features. scikit-learn does not store information about the
# training dataset. It is not always possible to retrieve the number of features
# or their types. That's why the function needs another argument called initial_types.
initial_types = [
   ('sepal_length', FloatTensorType([None, 1])),
   ('sepal_width', FloatTensorType([None, 1])),
   ('petal_length', FloatTensorType([None, 1])),
   ('petal_width', FloatTensorType([None, 1])),
]

# Convert the model.
model_onnx = convert_sklearn(
   pipe, 'pipeline_rf', initial_types=initial_types, options=options
)

# And save.
with open('pipeline_rf.onnx', 'wb') as f:
 f.write(model_onnx.SerializeToString())

Upload the ONNX model to Cloud Storage

Create a Cloud Storage bucket to store the ONNX model file, and then upload the saved ONNX model file to your Cloud Storage bucket. For more information, see Upload objects from a filesystem.

Import the ONNX model into BigQuery

This step assumes you have uploaded the ONNX model to your Cloud Storage bucket. An example model is stored at gs://cloud-samples-data/bigquery/ml/onnx/pipeline_rf.onnx.

Console

  1. In the Google Cloud console, go to the BigQuery page.

    Go to the BigQuery page

  2. In the query editor, enter a CREATE MODEL statement like the following.

     CREATE OR REPLACE MODEL `mydataset.mymodel`
      OPTIONS (MODEL_TYPE='ONNX',
       MODEL_PATH='gs://bucket/path/to/onnx_model/*')
    

    For example:

     CREATE OR REPLACE MODEL `example_dataset.imported_onnx_model`
      OPTIONS (MODEL_TYPE='ONNX',
       MODEL_PATH='gs://cloud-samples-data/bigquery/ml/onnx/pipeline_rf.onnx')
    

    The preceding query imports the ONNX model located at gs://cloud-samples-data/bigquery/ml/onnx/pipeline_rf.onnx as a BigQuery model named imported_onnx_model.

  3. Your new model should now appear in the Resources panel. As you expand each of the datasets in a project, models are listed along with the other BigQuery resources in the datasets. Models are indicated by the model icon: model icon .

  4. If you select the new model in the Resources panel, information about the model appears below the Query editor.

    onnx model info

bq

To import an ONNX model from Cloud Storage, run a batch query by entering a command like the following:

bq query \
--use_legacy_sql=false \
"CREATE MODEL
  `mydataset.mymodel`
OPTIONS
  (MODEL_TYPE='ONNX',
   MODEL_PATH='gs://bucket/path/to/onnx_model/*')"

For example:

bq query --use_legacy_sql=false \
"CREATE OR REPLACE MODEL
  `example_dataset.imported_onnx_model`
OPTIONS
  (MODEL_TYPE='ONNX',
   MODEL_PATH='gs://cloud-samples-data/bigquery/ml/onnx/pipeline_rf.onnx')"

After importing the model, it should appear in the output of bq ls [dataset_name]:

$ bq ls example_dataset

       tableId          Type    Labels   Time Partitioning
 --------------------- ------- -------- -------------------
  imported_onnx_model   MODEL

API

Insert a new job and populate the jobs#configuration.query property as in the following request body:

{
  "query": "CREATE MODEL project_id:mydataset.mymodel OPTIONS(MODEL_TYPE='ONNX' MODEL_PATH='gs://bucket/path/to/onnx_model/*')"
}

BigQuery DataFrames

Before trying this sample, follow the BigQuery DataFrames setup instructions in the BigQuery quickstart using BigQuery DataFrames. For more information, see the BigQuery DataFrames reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

Import the model by using the ONNXModel object.

import bigframes
from bigframes.ml.imported import ONNXModel

bigframes.options.bigquery.project = PROJECT_ID
# You can change the location to one of the valid locations: https://cloud.google.com/bigquery/docs/locations#supported_locations
bigframes.options.bigquery.location = "US"

imported_onnx_model = ONNXModel(
    model_path="gs://cloud-samples-data/bigquery/ml/onnx/pipeline_rf.onnx"
)

Make predictions with the imported ONNX model

Console

  1. In the Google Cloud console, go to the BigQuery page.

    Go to the BigQuery page

  2. In the query editor, enter a query using ML.PREDICT like the following.

     SELECT *
       FROM ML.PREDICT(MODEL example_dataset.imported_onnx_model,
         (
          SELECT * FROM bigquery-public-data.ml_datasets.iris
         )
     )
     

    The preceding query uses the model named imported_onnx_model in the dataset example_dataset in the current project to make predictions from input data in the public table iris from the dataset ml_datasets in the project bigquery-public-data. In this case, the ONNX model expects four float inputs: sepal_length, sepal_width, petal_length, petal_width which match the initial_types defined in step 2 , so the subquery SELECT the whole bigquery-public-data table which contains these 4 input columns.

    The model outputs the column label and probabilities, as well as the columns from the input table.

    • label represents the predicted class label.
    • probabilities is an array of probabilities representing probabilities for each class.

    The query result is similar to following:

    Query results

bq

To make predictions from input data in the table input_data, enter a command like the following, using the imported ONNX model my_model:

bq query \
--use_legacy_sql=false \
'SELECT *
 FROM ML.PREDICT(
   MODEL `my_project.my_dataset.my_model`,
   (SELECT * FROM input_data))'

For example:

bq query \
--use_legacy_sql=false \
'SELECT *
FROM ML.PREDICT(
  MODEL `example_dataset.imported_onnx_model`,
  (SELECT * FROM `bigquery-public-data.ml_datasets.iris`))'

API

Insert a new job and populate the jobs#configuration.query property as in the following request body:

{
  "query": "SELECT * FROM ML.PREDICT(MODEL `my_project.my_dataset.my_model`, (SELECT * FROM input_data))"
}

BigQuery DataFrames

Before trying this sample, follow the BigQuery DataFrames setup instructions in the BigQuery quickstart using BigQuery DataFrames. For more information, see the BigQuery DataFrames reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

Use the predict function to run the remote model:

import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.ml_datasets.iris")
predictions = imported_onnx_model.predict(df)
predictions.peek(5)

The result is similar to the following: Result_visualization

What's next