[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-14 (世界標準時間)。"],[[["BigQuery ML accommodates various input feature types, tailored to different model categories such as supervised, unsupervised, and time series models."],["Numeric, categorical, timestamp, struct, geography, and array types are supported across many BigQuery ML models, with specific models having certain specificities."],["Dense vector input is supported using `ARRAY\u003cnumerical\u003e` for model training, which includes a special embedding feature as seen in the `ML.GENERATE_EMBEDDING` function."],["Sparse input during model training is supported through the use of `ARRAY\u003cSTRUCT\u003e`, where each struct contains an `INT64` index and a numeric value."],["Matrix Factorization and ARIMA_PLUS models have unique input requirements, with the provided input types for ARIMA_PLUS_XREG only applying to external regressors."]]],[]]