Genera incorporamenti di immagini utilizzando la funzione ML.GENERATE_embedDING
Questo documento mostra come creare un modello BigQuery ML
modello remoto
che fa riferimento a un incorporamento di Vertex AI
modello di base.
Poi utilizzi il modello con la
funzione ML.GENERATE_EMBEDDING
per creare embedding di immagini utilizzando i dati di una
tabella di oggetti
BigQuery.
Ruoli obbligatori
Per creare una connessione, devi disporre di quanto segue Ruolo IAM (Identity and Access Management):
roles/bigquery.connectionAdmin
Per concedere le autorizzazioni all'account di servizio della connessione, devi disporre della seguente autorizzazione:
resourcemanager.projects.setIamPolicy
Per creare il modello utilizzando BigQuery ML, sono necessarie le seguenti autorizzazioni IAM:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:
bigquery.tables.getData
sul tavolobigquery.models.getData
sul modellobigquery.jobs.create
Prima di iniziare
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Crea un set di dati
Crea un set di dati BigQuery per archiviare il tuo modello ML:
Nella console Google Cloud, vai alla pagina BigQuery.
Nel riquadro Explorer, fai clic sul nome del tuo progetto.
Fai clic su
Visualizza azioni > Crea set di dati.Nella pagina Crea set di dati, segui questi passaggi:
In ID set di dati, inserisci
bqml_tutorial
.Per Tipo di località, seleziona Più regioni e poi Stati Uniti (più regioni negli Stati Uniti).
I set di dati pubblici sono archiviati nella
US
multiregione. Per semplicità, archivia il set di dati nella stessa posizione.Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.
Crea una connessione
Crea una connessione risorsa Cloud e recupera l'account di servizio della connessione. Crea la connessione in nella stessa località del set di dati che hai creato passaggio precedente.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Per creare una connessione, fai clic su
Aggiungi e poi fai clic su Connessioni a origini dati esterne.Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per connessione.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_id
sostituisce il progetto predefinito.Sostituisci quanto segue:
REGION
: il tuo regione di connessionePROJECT_ID
: l'ID del tuo progetto Google CloudCONNECTION_ID
: un ID per la connessione
Quando crei una risorsa di connessione, BigQuery crea di account di servizio di sistema univoco e lo associa alla connessione.
Risoluzione dei problemi: se ricevi il seguente errore di connessione, Aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Aggiungi la seguente sezione al tuo file main.tf
.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: un ID per connessionePROJECT_ID
: il tuo ID progetto Google CloudREGION
: la regione di connessione
Concedi all'account di servizio l'accesso
Concedi all'account di servizio della connessione il ruolo Vertex AI User.
Se prevedi di specificare l'endpoint come URL quando crei il modello remoto, ad esempio endpoint = 'https://us-central1-aiplatform.googleapis.com/v1/projects/myproject/locations/us-central1/publishers/google/models/text-embedding-004'
, concedi questo ruolo nello stesso progetto specificato nell'URL.
Se prevedi di specificare l'endpoint utilizzando il nome del modello quando crei il modello remoto, ad esempio endpoint = 'text-embedding-004'
, concedi questo ruolo nello stesso progetto in cui prevedi di creare il modello remoto.
Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource
.
Per concedere il ruolo:
Console
Vai alla pagina IAM e amministrazione.
Fai clic su
Concedi l'accesso.Viene visualizzata la finestra di dialogo Aggiungi entità.
Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.
Nel campo Seleziona un ruolo, seleziona Vertex AI e poi Utente Vertex AI.
Fai clic su Salva.
gcloud
Utilizza il
comando gcloud projects add-iam-policy-binding
:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.user' --condition=None
Sostituisci quanto segue:
PROJECT_NUMBER
: il numero del progettoMEMBER
: l'ID account di servizio che hai copiato in precedenza
Crea una tabella di oggetti
Crea una tabella di oggetto con contenuti di immagini. La tabella degli oggetti consente di analizzare le immagini senza spostarle da Cloud Storage.
Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve trovarsi nello stesso progetto in cui prevedi di creare il modello e chiamare la funzione ML.GENERATE_EMBEDDING
. Se vuoi chiamare la funzione ML.GENERATE_EMBEDDING
in un progetto diverso da quello che contiene il bucket Cloud Storage utilizzato dalla tabella di oggetti, devi concedere il ruolo Amministratore archiviazione a livello di bucket all'account di servizio service-A@gcp-sa-aiplatform.iam.gserviceaccount.com
.
crea un modello
Nella console Google Cloud, vai alla pagina BigQuery.
Utilizza l'editor SQL per creare un modello remoto:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID` OPTIONS (ENDPOINT = 'ENDPOINT');
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progettoDATASET_ID
: l'ID del set di dati che deve contenere il modelloMODEL_NAME
: il nome del modelloREGION
: la regione utilizzata dalla connessioneCONNECTION_ID
: l'ID della connessione BigQueryQuando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione completo visualizzato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
ENDPOINT
: l'incorporamento LLM da utilizzare, in questo casomultimodalembedding@001
.
Genera embedding di immagini
Genera incorporamenti di immagini con
Funzione ML.GENERATE_EMBEDDING
utilizzando i dati immagine di una tabella di oggetti:
SELECT * FROM ML.GENERATE_EMBEDDING( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.TABLE_NAME, STRUCT(FLATTEN_JSON AS flatten_json_output, OUTPUT_DIMENSIONALITY AS output_dimensionality) );
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che contiene il modello.MODEL_NAME
: il nome del modello remoto su un modellomultimodalembedding@001
.TABLE_NAME
: il nome della tabella dell'oggetto che contiene le immagini da incorporare.FLATTEN_JSON
: un valoreBOOL
che indica se analizzare l'embedding in una colonna separata. Il valore predefinito èTRUE
.OUTPUT_DIMENSIONALITY
: un valoreINT64
che specifica il numero di dimensioni da utilizzare per la generazione degli embedding. I valori validi sono128
,256
,512
e1408
. Il valore predefinito è1408
. Ad esempio, se specifichi256 AS output_dimensionality
, poi ilml_generate_embedding_result
contiene 256 incorporamenti per ogni valore di input.
Esempio
L'esempio seguente mostra come creare embedding per le immagini nella tabella degli oggetti images
:
SELECT * FROM ML.GENERATE_EMBEDDING( MODEL `mydataset.embedding_model`, TABLE `mydataset.images`, STRUCT(TRUE AS flatten_json_output, 512 AS output_dimensionality) );