Genera incorporamenti di immagini utilizzando la funzione ML.GENERATE_embedDING

Questo documento mostra come creare un modello BigQuery ML modello remoto che fa riferimento a un incorporamento di Vertex AI modello di base. Poi utilizzi il modello con la funzione ML.GENERATE_EMBEDDING per creare embedding di immagini utilizzando i dati di una tabella di oggetti BigQuery.

Ruoli obbligatori

  • Per creare una connessione, devi disporre di quanto segue Ruolo IAM (Identity and Access Management):

    • roles/bigquery.connectionAdmin
  • Per concedere le autorizzazioni all'account di servizio della connessione, devi disporre della seguente autorizzazione:

    • resourcemanager.projects.setIamPolicy
  • Per creare il modello utilizzando BigQuery ML, sono necessarie le seguenti autorizzazioni IAM:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:

    • bigquery.tables.getData sul tavolo
    • bigquery.models.getData sul modello
    • bigquery.jobs.create

Prima di iniziare

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Crea un set di dati

Crea un set di dati BigQuery per archiviare il tuo modello ML:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai alla pagina BigQuery

  2. Nel riquadro Explorer, fai clic sul nome del tuo progetto.

  3. Fai clic su Visualizza azioni > Crea set di dati.

    Crea il set di dati.

  4. Nella pagina Crea set di dati, segui questi passaggi:

    • In ID set di dati, inserisci bqml_tutorial.

    • Per Tipo di località, seleziona Più regioni e poi Stati Uniti (più regioni negli Stati Uniti).

      I set di dati pubblici sono archiviati nella US multiregione. Per semplicità, archivia il set di dati nella stessa posizione.

    • Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.

      Pagina Crea set di dati.

Crea una connessione

Crea una connessione risorsa Cloud e recupera l'account di servizio della connessione. Crea la connessione in nella stessa località del set di dati che hai creato passaggio precedente.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Per creare una connessione, fai clic su Aggiungi e poi fai clic su Connessioni a origini dati esterne.

  3. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  4. Nel campo ID connessione, inserisci un nome per connessione.

  5. Fai clic su Crea connessione.

  6. Fai clic su Vai alla connessione.

  7. Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: il tuo regione di connessione
    • PROJECT_ID: l'ID del tuo progetto Google Cloud
    • CONNECTION_ID: un ID per la connessione

    Quando crei una risorsa di connessione, BigQuery crea di account di servizio di sistema univoco e lo associa alla connessione.

    Risoluzione dei problemi: se ricevi il seguente errore di connessione, Aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Aggiungi la seguente sezione al tuo file main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Sostituisci quanto segue:

  • CONNECTION_ID: un ID per connessione
  • PROJECT_ID: il tuo ID progetto Google Cloud
  • REGION: la regione di connessione

Concedi all'account di servizio l'accesso

Concedi all'account di servizio della connessione il ruolo Vertex AI User.

Se prevedi di specificare l'endpoint come URL quando crei il modello remoto, ad esempio endpoint = 'https://us-central1-aiplatform.googleapis.com/v1/projects/myproject/locations/us-central1/publishers/google/models/text-embedding-004', concedi questo ruolo nello stesso progetto specificato nell'URL.

Se prevedi di specificare l'endpoint utilizzando il nome del modello quando crei il modello remoto, ad esempio endpoint = 'text-embedding-004', concedi questo ruolo nello stesso progetto in cui prevedi di creare il modello remoto.

Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

Per concedere il ruolo:

Console

  1. Vai alla pagina IAM e amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Concedi l'accesso.

    Viene visualizzata la finestra di dialogo Aggiungi entità.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.

  4. Nel campo Seleziona un ruolo, seleziona Vertex AI e poi Utente Vertex AI.

  5. Fai clic su Salva.

gcloud

Utilizza il comando gcloud projects add-iam-policy-binding:

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.user' --condition=None

Sostituisci quanto segue:

  • PROJECT_NUMBER: il numero del progetto
  • MEMBER: l'ID account di servizio che hai copiato in precedenza

Crea una tabella di oggetti

Crea una tabella di oggetto con contenuti di immagini. La tabella degli oggetti consente di analizzare le immagini senza spostarle da Cloud Storage.

Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve trovarsi nello stesso progetto in cui prevedi di creare il modello e chiamare la funzione ML.GENERATE_EMBEDDING. Se vuoi chiamare la funzione ML.GENERATE_EMBEDDING in un progetto diverso da quello che contiene il bucket Cloud Storage utilizzato dalla tabella di oggetti, devi concedere il ruolo Amministratore archiviazione a livello di bucket all'account di servizio service-A@gcp-sa-aiplatform.iam.gserviceaccount.com.

crea un modello

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Utilizza l'editor SQL per creare un modello remoto:

    CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`
    REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID`
    OPTIONS (ENDPOINT = 'ENDPOINT');

    Sostituisci quanto segue:

    • PROJECT_ID: il tuo ID progetto
    • DATASET_ID: l'ID del set di dati che deve contenere il modello
    • MODEL_NAME: il nome del modello
    • REGION: la regione utilizzata dalla connessione
    • CONNECTION_ID: l'ID della connessione BigQuery

      Quando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione completo visualizzato in ID connessione, ad esempio projects/myproject/locations/connection_location/connections/myconnection

    • ENDPOINT: l'incorporamento LLM da utilizzare, in questo caso multimodalembedding@001.

Genera embedding di immagini

Genera incorporamenti di immagini con Funzione ML.GENERATE_EMBEDDING utilizzando i dati immagine di una tabella di oggetti:

SELECT *
FROM ML.GENERATE_EMBEDDING(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(FLATTEN_JSON AS flatten_json_output,
  OUTPUT_DIMENSIONALITY AS output_dimensionality)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello remoto su un modello multimodalembedding@001.
  • TABLE_NAME: il nome della tabella dell'oggetto che contiene le immagini da incorporare.
  • FLATTEN_JSON: un valore BOOL che indica se analizzare l'embedding in una colonna separata. Il valore predefinito è TRUE.
  • OUTPUT_DIMENSIONALITY: un valore INT64 che specifica il numero di dimensioni da utilizzare per la generazione degli embedding. I valori validi sono 128, 256, 512 e 1408. Il valore predefinito è 1408. Ad esempio, se specifichi 256 AS output_dimensionality, poi il ml_generate_embedding_result contiene 256 incorporamenti per ogni valore di input.

Esempio

L'esempio seguente mostra come creare embedding per le immagini nella tabella degli oggetti images:

SELECT *
FROM
  ML.GENERATE_EMBEDDING(
    MODEL `mydataset.embedding_model`,
    TABLE `mydataset.images`,
    STRUCT(TRUE AS flatten_json_output, 512 AS output_dimensionality)
  );