Membuat penyematan video menggunakan fungsi ML.GENERATE_EMBEDDING
Dokumen ini menunjukkan cara membuat model jarak jauh BigQuery ML yang merujuk pada model dasar penyematan Vertex AI.
Kemudian, Anda menggunakan model tersebut dengan
fungsi ML.GENERATE_EMBEDDING
untuk membuat penyematan video menggunakan data dari
tabel objek
BigQuery.
Peran yang diperlukan
Untuk membuat koneksi, Anda memerlukan keanggotaan dalam peran Identity and Access Management (IAM) berikut:
roles/bigquery.connectionAdmin
Untuk memberikan izin ke akun layanan koneksi, Anda memerlukan izin berikut:
resourcemanager.projects.setIamPolicy
Untuk membuat model menggunakan BigQuery ML, Anda memerlukan izin IAM berikut:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Untuk menjalankan inferensi, Anda memerlukan izin berikut:
bigquery.tables.getData
pada tabelbigquery.models.getData
pada modelbigquery.jobs.create
Sebelum memulai
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Membuat set data
Buat set data BigQuery untuk menyimpan model ML Anda:
Di konsol Google Cloud, buka halaman BigQuery.
Di panel Explorer, klik nama project Anda.
Klik
View actions > Create dataset.Di halaman Create dataset, lakukan hal berikut:
Untuk Dataset ID, masukkan
bqml_tutorial
.Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).
Set data publik disimpan di
US
multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.Jangan ubah setelan default yang tersisa, lalu klik Create dataset.
Membuat koneksi
Buat koneksi resource Cloud dan dapatkan akun layanan koneksi. Buat koneksi di lokasi yang sama dengan set data yang Anda buat di langkah sebelumnya.
Pilih salah satu opsi berikut:
Konsol
Buka halaman BigQuery.
Untuk membuat koneksi, klik
Tambahkan, lalu klik Koneksi ke sumber data eksternal.Dalam daftar Connection type, pilih Vertex AI remote models, remote functions and BigLake (Cloud Resource).
Di kolom Connection ID, masukkan nama untuk koneksi Anda.
Klik Create connection.
Klik Go to connection.
Di panel Connection info, salin ID akun layanan untuk digunakan di langkah berikutnya.
bq
Di lingkungan command line, buat koneksi:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Parameter
--project_id
akan mengganti project default.Ganti kode berikut:
REGION
: region koneksi AndaPROJECT_ID
: project ID Google Cloud AndaCONNECTION_ID
: ID untuk koneksi Anda
Saat Anda membuat resource koneksi, BigQuery akan membuat akun layanan sistem unik dan mengaitkannya dengan koneksi.
Pemecahan masalah: Jika Anda mendapatkan error koneksi berikut, update Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Ambil dan salin ID akun layanan untuk digunakan di langkah berikutnya:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
Outputnya mirip dengan hal berikut ini:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Gunakan resource google_bigquery_connection
.
Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.
Contoh berikut membuat koneksi resource Cloud bernama
my_cloud_resource_connection
di region US
:
Untuk menerapkan konfigurasi Terraform di project Google Cloud, selesaikan langkah-langkah di bagian berikut.
Menyiapkan Cloud Shell
- Luncurkan Cloud Shell.
-
Tetapkan project Google Cloud default tempat Anda ingin menerapkan konfigurasi Terraform.
Anda hanya perlu menjalankan perintah ini sekali per project, dan dapat dijalankan di direktori mana pun.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
Variabel lingkungan akan diganti jika Anda menetapkan nilai eksplisit dalam file konfigurasi Terraform.
Menyiapkan direktori
Setiap file konfigurasi Terraform harus memiliki direktorinya sendiri (juga disebut modul root).
-
Di Cloud Shell, buat direktori dan file baru di dalam direktori tersebut. Nama file harus memiliki
ekstensi
.tf
—misalnyamain.tf
. Dalam tutorial ini, file ini disebut sebagaimain.tf
.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Jika mengikuti tutorial, Anda dapat menyalin kode contoh di setiap bagian atau langkah.
Salin kode contoh ke dalam
main.tf
yang baru dibuat.Atau, salin kode dari GitHub. Tindakan ini direkomendasikan jika cuplikan Terraform adalah bagian dari solusi menyeluruh.
- Tinjau dan ubah contoh parameter untuk diterapkan pada lingkungan Anda.
- Simpan perubahan Anda.
-
Lakukan inisialisasi Terraform. Anda hanya perlu melakukan ini sekali per direktori.
terraform init
Secara opsional, untuk menggunakan versi penyedia Google terbaru, sertakan opsi
-upgrade
:terraform init -upgrade
Menerapkan perubahan
-
Tinjau konfigurasi dan pastikan resource yang akan dibuat atau
diupdate oleh Terraform sesuai yang Anda inginkan:
terraform plan
Koreksi konfigurasi jika diperlukan.
-
Terapkan konfigurasi Terraform dengan menjalankan perintah berikut dan memasukkan
yes
pada prompt:terraform apply
Tunggu hingga Terraform menampilkan pesan "Apply complete!".
- Buka project Google Cloud Anda untuk melihat hasilnya. Di Konsol Google Cloud, buka resource Anda di UI untuk memastikan bahwa Terraform telah membuat atau mengupdatenya.
Memberikan akses pada akun layanan
Berikan peran Vertex AI User ke akun layanan koneksi.
Jika Anda berencana menentukan endpoint sebagai URL saat membuat model jarak jauh, misalnya endpoint = 'https://us-central1-aiplatform.googleapis.com/v1/projects/myproject/locations/us-central1/publishers/google/models/text-embedding-004'
, berikan peran ini di project yang sama dengan yang Anda tentukan di URL.
Jika Anda berencana menentukan endpoint menggunakan nama model saat membuat model jarak jauh, misalnya endpoint = 'text-embedding-004'
, berikan peran ini di project yang sama dengan tempat Anda berencana membuat model jarak jauh.
Memberikan peran di project lain akan menyebabkan error bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource
.
Untuk memberikan peran, ikuti langkah-langkah berikut:
Konsol
Buka halaman IAM & Admin.
Klik
Grant access.Dialog Add principals akan terbuka.
Di kolom Akun utama baru, masukkan ID akun layanan yang Anda salin sebelumnya.
Di kolom Pilih peran, pilih Vertex AI, lalu pilih Pengguna Vertex AI.
Klik Simpan.
gcloud
Gunakan
perintah gcloud projects add-iam-policy-binding
:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.user' --condition=None
Ganti kode berikut:
PROJECT_NUMBER
: nomor project AndaMEMBER
: ID akun layanan yang Anda salin sebelumnya
Membuat tabel objek
Buat tabel objek yang menyimpan konten video. Tabel objek memungkinkan Anda menganalisis video tanpa memindahkannya dari Cloud Storage.
Bucket Cloud Storage yang digunakan oleh tabel objek harus berada di project yang sama tempat Anda berencana membuat model dan memanggil fungsi ML.GENERATE_EMBEDDING
. Jika ingin memanggil fungsi ML.GENERATE_EMBEDDING
di project yang berbeda dengan project yang berisi bucket Cloud Storage yang digunakan oleh tabel objek, Anda harus memberikan peran Storage Admin di tingkat bucket ke akun layanan service-A@gcp-sa-aiplatform.iam.gserviceaccount.com
.
Membuat model
Di konsol Google Cloud, buka halaman BigQuery.
Dengan menggunakan editor SQL, buat model jarak jauh:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID` OPTIONS (ENDPOINT = 'ENDPOINT');
Ganti kode berikut:
PROJECT_ID
: project ID AndaDATASET_ID
: ID set data untuk menampung modelMODEL_NAME
: nama modelREGION
: region yang digunakan oleh koneksiCONNECTION_ID
: ID koneksi BigQuery AndaSaat Anda melihat detail koneksi di Konsol Google Cloud, ini adalah nilai di bagian terakhir ID koneksi yang sepenuhnya memenuhi syarat yang ditampilkan di ID Koneksi, misalnya
projects/myproject/locations/connection_location/connections/myconnection
ENDPOINT
: LLM penyematan yang akan digunakan, dalam hal inimultimodalembedding@001
.
Membuat embedding video
Buat penyematan video dengan fungsi ML.GENERATE_EMBEDDING
menggunakan data video dari tabel objek:
SELECT * FROM ML.GENERATE_EMBEDDING( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.TABLE_NAME, STRUCT(FLATTEN_JSON AS flatten_json_output, START_SECOND AS start_second, END_SECOND AS end_second, INTERVAL_SECONDS AS interval_seconds) );
Ganti kode berikut:
PROJECT_ID
: project ID Anda.DATASET_ID
: ID set data yang berisi model.MODEL_NAME
: nama model jarak jauh di atas modelmultimodalembedding@001
.TABLE_NAME
: nama tabel objek yang berisi video yang akan disematkan.FLATTEN_JSON
: nilaiBOOL
yang menunjukkan apakah akan mengurai penyematan ke kolom terpisah atau tidak. Nilai defaultnya adalahTRUE
.START_SECOND
: nilaiFLOAT64
yang menentukan detik dalam video tempat penyematan dimulai. Nilai defaultnya adalah0
. Nilai ini harus positif dan lebih kecil dari nilaiend_second
.END_SECOND
: nilaiFLOAT64
yang menentukan detik dalam video tempat penyematan akan diakhiri. Nilai defaultnya adalah120
. Nilai ini harus positif dan lebih besar dari nilaistart_second
.INTERVAL_SECONDS
: nilaiFLOAT64
yang menentukan interval yang akan digunakan saat membuat penyematan. Misalnya, jika Anda menetapkanstart_second = 0
,end_second = 120
, daninterval_seconds = 10
, maka video akan dibagi menjadi dua belas segmen berdurasi 10 detik ([0, 10), [10, 20), [20, 30)...
) dan penyematan akan dibuat untuk setiap segmen. Nilai ini harus lebih besar dari4
dan kurang dari120
. Nilai defaultnya adalah16
.
Contoh
Contoh berikut menunjukkan cara membuat penyematan untuk video di
tabel objek videos
. Penyematan dibuat untuk setiap interval 5 detik
antara tanda 10 detik dan 40 detik di setiap video.
SELECT * FROM ML.GENERATE_EMBEDDING( MODEL `mydataset.embedding_model`, TABLE `mydataset.videos`, STRUCT(TRUE AS flatten_json_output, 10 AS start_second, 40 AS end_second, 5 AS interval_seconds) );