Gerar texto usando um modelo do Gemini e a função ML.GENERATE_TEXT

Neste tutorial, mostramos como criar um modelo remoto baseado no modelo gemini-1.0-pro-002, e como usá-lo com a função ML.GENERATE_TEXT para extrair palavras-chave e realizar análises de sentimento em resenhas de filmes a tabela pública bigquery-public-data.imdb.reviews.

Permissões necessárias

  • Para criar o conjunto de dados, você precisa da permissão bigquery.datasets.create do Identity and Access Management (IAM).
  • Para criar o recurso de conexão, você precisa das seguintes permissões do IAM:

    • bigquery.connections.create
    • bigquery.connections.get
  • Para conceder permissões à conta de serviço da conexão, você precisa da seguinte permissão:

    • resourcemanager.projects.setIamPolicy
  • Para criar o modelo, você precisa das seguintes permissões:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Para executar a inferência, você precisa das seguintes permissões:

    • bigquery.models.getData
    • bigquery.jobs.create

Custos

Neste documento, você usará os seguintes componentes faturáveis do Google Cloud:

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços. Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Para mais informações, consulte Preços do BigQuery na documentação do BigQuery.

Para mais informações sobre preços da Vertex AI, consulte esta página.

Antes de começar

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Verifique se a cobrança está ativada para o seu projeto do Google Cloud.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

crie um conjunto de dados

Crie um conjunto de dados do BigQuery para armazenar o modelo de ML:

  1. No console do Google Cloud, acesse a página do BigQuery.

    Acesse a página do BigQuery

  2. No painel Explorer, clique no nome do seu projeto.

  3. Clique em Conferir ações > Criar conjunto de dados.

    Criar conjunto de dados.

  4. Na página Criar conjunto de dados, faça o seguinte:

    • Para o código do conjunto de dados, insira bqml_tutorial.

    • Em Tipo de local, selecione Multirregião e EUA (várias regiões nos Estados Unidos).

      Os conjuntos de dados públicos são armazenados na multirregião US. Para simplificar, armazene seus conjuntos de dados no mesmo local.

    • Mantenha as configurações padrão restantes e clique em Criar conjunto de dados.

      Página Criar conjunto de dados.

Criar uma conexão

Crie uma Conexão de recursos do Cloud e tenha acesso à conta de serviço da conexão. Crie a conexão no mesmo local do conjunto de dados criado na etapa anterior.

Selecione uma das seguintes opções:

Console

  1. Acessar a página do BigQuery.

    Acessar o BigQuery

  2. Para criar uma conexão, clique em Adicionar e em Conexões com fontes de dados externas.

  3. Na lista Tipo de conexão, selecione Modelos remotos da Vertex AI, funções remotas e BigLake (Cloud Resource).

  4. No campo ID da conexão, insira um nome para a conexão.

  5. Clique em Criar conexão.

  6. Clique em Ir para conexão.

  7. No painel Informações da conexão, copie o ID da conta de serviço para uso em uma etapa posterior.

bq

  1. Em um ambiente de linha de comando, crie uma conexão:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID
    

    O parâmetro --project_id substitui o projeto padrão.

    Substitua:

    • REGION: sua região de conexão
    • PROJECT_ID: o ID do projeto do Google Cloud
    • CONNECTION_ID: um ID para sua conexão

    Quando você cria um recurso de conexão, o BigQuery cria uma conta de serviço do sistema exclusiva e a associa à conexão.

    Solução de problemas: se você receber o seguinte erro de conexão, atualize o SDK Google Cloud:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupere e copie o ID da conta de serviço para uso em uma etapa posterior:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID
    

    O resultado será assim:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Anexe a seguinte seção ao seu arquivo main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Substitua:

  • CONNECTION_ID: um ID para sua conexão
  • PROJECT_ID: o ID do projeto do Google Cloud
  • REGION: sua região de conexão

Conceder permissões para a conta de serviço do portal

Para conceder à conta de serviço da conexão um papel apropriado para acessar o serviço da Vertex AI, siga estas etapas:

  1. Acessar a página AM e administrador

    Acessar IAM e administrador

  2. Clique em Conceder acesso.

  3. No campo Novos principais, digite o ID da conta de serviço que você copiou anteriormente.

  4. No campo Selecionar um papel, escolha Vertex AI e, em seguida, selecione o papel Usuário da Vertex AI.

  5. Clique em Salvar.

Criar o modelo remoto

Crie um modelo remoto que represente um modelo da Vertex AI:

  1. No Console do Google Cloud, acesse a página BigQuery.

    Acessar o BigQuery

  2. No editor de consultas, execute a seguinte instrução:

CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model`
  REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
  OPTIONS (ENDPOINT = 'gemini-1.0-pro-002');

Substitua:

  • LOCATION: o local da conexão
  • CONNECTION_ID: o ID da sua conexão do BigQuery

    Quando você visualiza os detalhes da conexão no console do Google Cloud, esse é o valor na última seção do ID da conexão totalmente qualificado, mostrado em ID da conexão, por exemplo projects/myproject/locations/connection_location/connections/myconnection

A consulta leva alguns segundos para ser concluída. Depois disso, o modelo gemini_model aparece no conjunto de dados bqml_tutorial no painel Explorer. Como a consulta usa uma instrução CREATE MODEL para criar um modelo, não há resultados de consulta.

Realizar extração de palavra-chave

Realize a extração de palavra-chave em avaliações de filmes do IMDB usando o modelo remoto e a função ML.GENERATE_TEXT:

  1. No Console do Google Cloud, acesse a página BigQuery.

    Acessar o BigQuery

  2. No editor de consultas, insira a seguinte instrução para realizar a extração de palavra-chave em cinco avaliações de filmes:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      ml_generate_text_result['candidates'][0]['safety_ratings']
        AS safety_ratings,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));
    

    A saída é semelhante à seguinte, com as colunas não geradas omitidas para fins de esclarecimento:

    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                         | safety_ratings                              | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  | [{"category":1,"probability":1,             |                         | Extract the key words from |     |
    | **Negative sentiment:** \"terribly     | "probability_score":0.28856909,             |                         | the text below: I had to   |     |
    | bad acting\", \"dumb story\", \"not    | "severity":1,"severity_score":0.1510278},   |                         | see this on the British    |     |
    | even a kid would enjoy this\",         | {"category":2,"probability":1,              |                         | Airways plane. It was      |     |
    | \"something to switch off\"\n*         | "probability_score":0.062445287,            |                         | terribly bad acting and    |     |
    | **Context:** \"British Airways plane\" | "severity":1,"severity_score":0.10393038},  |                         | a dumb story. Not even     |     |
    | \n* **Genre:** \"movie\" (implied)...  | {"category":3,"probability":2,...           |                         | a kid would enjoy this...  |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  | [{"category":1,"probability":1,             |                         | Extract the key words from |     |
    | **Movie:** The Real Howard Spitz\n*    | "probability_score":0.2995148,"severity":2, |                         | the text below: This is    |     |
    | **Genre:** Family movie\n*             | "severity_score":0.22354652},               |                         | a family movie that was    |     |
    | **Broadcast:** ITV station, 1.00 am\n* | {"category":2,"probability":1,"             |                         | broadcast on my local      |     |
    | **Director:** Vadim Jean\n*            | probability_score":0.13072868,              |                         | ITV station at 1.00 am a   |     |
    | **Main character:** Howard Spitz,      | "severity":1,"severity_score":0.07030385},  |                         | couple of nights ago.      |     |
    | a children's author who hates...       | {"category":3,"probability":2,"       ...   |                         | This might be a strange... |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    Os resultados incluem as seguintes colunas:

    • generated_text: o texto gerado.
    • safety_ratings: os atributos de segurança, com informações sobre eventual bloqueio do conteúdo devido a uma das categorias de bloqueio. Para mais informações sobre os atributos de segurança, consulte a API Vertex PaLM.
    • ml_generate_text_status: o status da resposta da API sobre a linha correspondente. Se a operação tiver sido bem-sucedida, esse valor estará vazio.
    • prompt: o comando usado para a análise de sentimento.
    • Todas as colunas da tabela bigquery-public-data.imdb.reviews.
  3. Opcional: em vez de analisar manualmente o JSON retornado pela função, como você fez na etapa anterior, use o argumento flatten_json_output para retornar o texto gerado e os atributos de segurança em colunas separadas.

    No editor de consultas, execute a seguinte instrução:

    SELECT
      *
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens,
          TRUE AS flatten_json_output));
    

    A saída é semelhante à seguinte, com as colunas não geradas omitidas para fins de esclarecimento:

    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ml_generate_text_llm_result            | ml_generate_text_rai_result                  | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Keywords:                           | [{"category":1,"probability":1,              |                         | Extract the key words from |     |
    |                                        | "probability_score":0.29391089,"severity":1, |                         | the text below: I had to   |     |
    | * **Negative sentiment:**              | "severity_score":0.15584777},{"category":2,  |                         | see this on the British    |     |
    | "terribly bad acting", "dumb           | "probability":1,"probability_score":         |                         | Airways plane. It was      |     |
    | story", "not even a kid would          | 0.061311536,"severity":1,"severity_score":   |                         | terribly bad acting and    |     |
    | enjoy this", "switch off"              | 0.10320505},{"category":3,"probability":2,   |                         | a dumb story. Not even     |     |
    | * **Context:** "British                | "probability_score":0.60340...               |                         | a kid would enjoy this...  |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Key words:                          | [{"category":1,"probability":1,              |                         | Extract the key words from |     |
    |                                        | "probability_score":0.16968086,"severity":1, |                         | the text below: This is    |     |
    | * **Movie:** The Real Howard Spitz     | "severity_score":0.13386749},{"category":2,  |                         | a family movie that was    |     |
    | * **Genre:** Family movie              | "probability":1,"probability_score":         |                         | broadcast on my local      |     |
    | * **Broadcast:** ITV, 1.00             | 0.14841709,"severity":1,"severity_score":    |                         | ITV station at 1.00 am a   |     |
    | am                                     | 0.062674366},{"category":3,"probability":1,  |                         | couple of nights ago.      |     |
    | - ...                                  | "probability_score":0.38116196,...           |                         | This might be a strange... |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    

    Os resultados incluem as seguintes colunas:

    • ml_generate_text_llm_result: o texto gerado.
    • ml_generate_text_rai_result: os atributos de segurança, com informações sobre eventual bloqueio do conteúdo devido a uma das categorias de bloqueio. Para mais informações sobre os atributos de segurança, consulte a API Vertex PaLM.
    • ml_generate_text_status: o status da resposta da API sobre a linha correspondente. Se a operação tiver sido bem-sucedida, esse valor estará vazio.
    • prompt: o prompt usado para a extração da palavra-chave.
    • Todas as colunas da tabela bigquery-public-data.imdb.reviews.

Realizar análise de sentimento

Realize a análise de sentimento nas avaliações de filmes do IMDB usando o modelo remoto e a função ML.GENERATE_TEXT:

  1. No Console do Google Cloud, acesse a página BigQuery.

    Acessar o BigQuery

  2. No editor de consultas, execute a seguinte instrução para realizar a análise de sentimento em cinco avaliações de filmes:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      ml_generate_text_result['candidates'][0]['safety_ratings']
        AS safety_ratings,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT(
              'perform sentiment analysis on the following text, return one the following categories: positive, negative: ',
              review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));
    

    A saída é semelhante à seguinte, com as colunas não geradas omitidas para fins de esclarecimento:

    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                             | safety_ratings                              | ml_generate_text_status | prompt                     | ... |
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  | [{"category":1,"probability":1,             |                         | perform sentiment analysis |     |
    | Negative \n\nThis text expresses a         | "probability_score":0.33895186,             |                         | on the following text,     |     |
    | strongly negative sentiment towards the    | "severity":1,"severity_score":0.10521054},  |                         | return one the following   |     |
    | movie. Here's why:\n\n* **Negative         | {"category":2,"probability":1,              |                         | negative: I  had to see    |     |
    | like \"terribly,\" \"dumb,\" and           | "probability_score":0.069163561,"severity"  |                         | this on the British        |     | 
    | \"not even\" to describe the acting...     | :1,"severity_score":0.093512312},...        |                         | Airways plane. It was...   |     | 
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  | [{"category":1,"probability":1,             |                         | perform sentiment analysis |     |
    | Negative \n\nThis review expresses a       | "probability_score":0.35644665,             |                         | on the following text,     |     |
    | predominantly negative sentiment towards   | "severity":1,"severity_score":0.15253653},  |                         | return one the following   |     |
    | the movie \"The Real Howard Spitz.\"       | {"category":2,"probability":1,              |                         | categories: positive,      |     |
    | Here's why:\n\n* **Criticism of the film's | "probability_score":0.063948415,"severity"  |                         | negative: This is a family |     |
    | premise:** The reviewer finds it strange   | :1,"severity_score":0.047249716},           |                         | movie that was broadcast   |     |
    | that a film about a children's author...   | {"category":3,"probability":2,...           |                         | on my local ITV station... |     |
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    Os resultados incluem as mesmas colunas documentadas para Realizar a extração de palavra-chave.

Limpar

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.