使用 Gemini 模型和 ML.GENERATE_TEXT 函式生成文字

本教學課程說明如何根據 gemini-2.0-flash 模型建立遠端模型,然後使用 ML.GENERATE_TEXT 函式,從 bigquery-public-data.imdb.reviews 公開資料表擷取電影評論中的關鍵字,並進行情緒分析。

必要的角色

如要執行本教學課程,您需要下列 Identity and Access Management (IAM) 角色:

  • 建立及使用 BigQuery 資料集、連線和模型: BigQuery 管理員 (roles/bigquery.admin)。
  • 將權限授予連線的服務帳戶:專案 IAM 管理員 (roles/resourcemanager.projectIamAdmin)。

這些預先定義的角色具備執行本文中工作所需的權限。如要查看確切的必要權限,請展開「必要權限」部分:

所需權限

  • 建立資料集:bigquery.datasets.create
  • 建立、委派及使用連線: bigquery.connections.*
  • 設定預設連線:bigquery.config.*
  • 設定服務帳戶權限: resourcemanager.projects.getIamPolicyresourcemanager.projects.setIamPolicy
  • 建立模型並執行推論:
    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata

您或許還可透過自訂角色或其他預先定義的角色取得這些權限。

費用

在本文件中,您會使用下列 Google Cloud的計費元件:

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

如要根據預測用量估算費用,請使用 Pricing Calculator

初次使用 Google Cloud 的使用者可能符合免費試用資格。

如要進一步瞭解 BigQuery 定價,請參閱 BigQuery 說明文件中的「BigQuery 定價」一文。

如要進一步瞭解 Vertex AI 定價,請參閱 Vertex AI 定價頁面。

事前準備

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  2. Verify that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

建立資料集

建立 BigQuery 資料集來儲存機器學習模型。

控制台

  1. 前往 Google Cloud 控制台的「BigQuery」頁面。

    前往 BigQuery 頁面

  2. 在「Explorer」窗格中,按一下專案名稱。

  3. 依序點按 「View actions」(查看動作) >「Create dataset」(建立資料集)

  4. 在「建立資料集」頁面中,執行下列操作:

    • 在「Dataset ID」(資料集 ID) 中輸入 bqml_tutorial

    • 針對「Location type」(位置類型) 選取「Multi-region」(多區域),然後選取「US (multiple regions in United States)」(us (多個美國區域))

    • 其餘設定保留預設值,然後點選「建立資料集」

bq

如要建立新的資料集,請使用 bq mk 指令搭配 --location 旗標。如需可能的完整參數清單,請參閱 bq mk --dataset 指令參考資料。

  1. 建立名為「bqml_tutorial」的資料集,並將資料位置設為「US」,說明則設為「BigQuery ML tutorial dataset」:

    bq --location=US mk -d \
     --description "BigQuery ML tutorial dataset." \
     bqml_tutorial

    這個指令採用 -d 捷徑,而不是使用 --dataset 旗標。如果您省略 -d--dataset,該指令預設會建立資料集。

  2. 確認資料集已建立完成:

    bq ls

API

請呼叫 datasets.insert 方法,搭配已定義的資料集資源

{
  "datasetReference": {
     "datasetId": "bqml_tutorial"
  }
}

BigQuery DataFrames

在嘗試這個範例之前,請按照使用 BigQuery DataFrames 的 BigQuery 快速入門導覽課程中的 BigQuery DataFrames 設定說明操作。 詳情請參閱 BigQuery DataFrames 參考說明文件

如要驗證 BigQuery,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定 ADC」。

import google.cloud.bigquery

bqclient = google.cloud.bigquery.Client()
bqclient.create_dataset("bqml_tutorial", exists_ok=True)

建立連線

建立 Cloud 資源連線,並取得連線的服務帳戶。在與上一步建立的資料集相同的位置中建立連線。

如果您已設定預設連線,或具備 BigQuery 管理員角色,可以略過這個步驟。

建立供遠端模型使用的Cloud 資源連線,並取得連線的服務帳戶。在與上一步建立的資料集相同的位置中建立連線。

選取下列選項之一:

主控台

  1. 前往「BigQuery」頁面

    前往「BigQuery」

  2. 在「Explorer」窗格中,按一下 「新增資料」

    「新增資料」UI 元素。

    「新增資料」對話方塊隨即開啟。

  3. 在「Filter By」(篩選依據) 窗格的「Data Source Type」(資料來源類型) 區段中,選取「Business Applications」(商用應用程式)

    或者,您也可以在「Search for data sources」(搜尋資料來源) 欄位中輸入 Vertex AI

  4. 在「精選資料來源」部分,按一下「Vertex AI」

  5. 按一下「Vertex AI Models: BigQuery Federation」解決方案資訊卡。

  6. 在「連線類型」清單中,選取「Vertex AI 遠端模型、遠端函式和 BigLake (Cloud 資源)」

  7. 在「連線 ID」欄位中,輸入連線名稱。

  8. 點選「建立連線」

  9. 按一下「前往連線」

  10. 在「連線資訊」窗格中,複製服務帳戶 ID,以供後續步驟使用。

bq

  1. 在指令列環境中建立連線:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    --project_id 參數會覆寫預設專案。

    更改下列內容:

    • REGION:您的連線區域
    • PROJECT_ID:您的 Google Cloud 專案 ID
    • CONNECTION_ID:連線的 ID

    建立連線資源時,BigQuery 會建立專屬的系統服務帳戶,並將其與連線建立關聯。

    疑難排解:如果收到下列連線錯誤訊息,請更新 Google Cloud SDK

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. 擷取並複製服務帳戶 ID,以供後續步驟使用:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    輸出結果會與下列內容相似:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

使用 google_bigquery_connection 資源。

如要向 BigQuery 進行驗證,請設定應用程式預設憑證。詳情請參閱「設定用戶端程式庫的驗證機制」。

下列範例會在 US 地區中建立名為 my_cloud_resource_connection 的 Cloud 資源連線:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

如要在 Google Cloud 專案中套用 Terraform 設定,請完成下列各節的步驟。

準備 Cloud Shell

  1. 啟動 Cloud Shell
  2. 設定要套用 Terraform 設定的預設 Google Cloud 專案。

    每項專案只需要執行一次這個指令,且可以在任何目錄中執行。

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    如果您在 Terraform 設定檔中設定明確值,環境變數就會遭到覆寫。

準備目錄

每個 Terraform 設定檔都必須有自己的目錄 (也稱為根模組)。

  1. Cloud Shell 中建立目錄,並在該目錄中建立新檔案。檔案名稱的副檔名必須是 .tf,例如 main.tf。在本教學課程中,這個檔案稱為 main.tf
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. 如果您正在學習教學課程,可以複製每個章節或步驟中的範例程式碼。

    將範例程式碼複製到新建立的 main.tf 中。

    視需要從 GitHub 複製程式碼。如果 Terraform 程式碼片段是端對端解決方案的一部分,建議您使用這個方法。

  3. 查看並修改範例參數,套用至您的環境。
  4. 儲存變更。
  5. 初始化 Terraform。每個目錄只需執行一次這項操作。
    terraform init

    如要使用最新版 Google 供應商,請加入 -upgrade 選項:

    terraform init -upgrade

套用變更

  1. 檢查設定,確認 Terraform 即將建立或更新的資源符合您的預期:
    terraform plan

    視需要修正設定。

  2. 執行下列指令,並在提示中輸入 yes,套用 Terraform 設定:
    terraform apply

    等待 Terraform 顯示「Apply complete!」訊息。

  3. 開啟 Google Cloud 專案即可查看結果。在 Google Cloud 控制台中,前往 UI 中的資源,確認 Terraform 已建立或更新這些資源。

將權限授予連線的服務帳戶

為連線的服務帳戶授予 Vertex AI 使用者角色。您必須在「事前準備」一節中建立或選取的專案中,授予這項角色。在其他專案中授予角色會導致 bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource 錯誤。

如要授予角色,請按照下列步驟操作:

  1. 前往「IAM & Admin」(IAM 與管理) 頁面。

    前往「IAM & Admin」(IAM 與管理)

  2. 按一下「授予存取權」

  3. 在「新主體」欄位,輸入先前複製的服務帳戶 ID。

  4. 在「Select a role」(請選擇角色) 欄位中,選擇「Vertex AI」,然後選取「Vertex AI User」(Vertex AI 使用者) 角色

  5. 按一下 [儲存]

建立遠端模型

建立代表代管 Vertex AI 模型的遠端模型:

  1. 前往 Google Cloud 控制台的「BigQuery」頁面。

    前往「BigQuery」

  2. 在查詢編輯器中執行下列陳述式:

CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model`
  REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
  OPTIONS (ENDPOINT = 'gemini-2.0-flash');

更改下列內容:

  • LOCATION:連線位置
  • CONNECTION_ID:BigQuery 連線的 ID

    在 Google Cloud 控制台中查看連線詳細資料時,這是「連線 ID」中顯示的完整連線 ID 最後一個部分的值,例如 projects/myproject/locations/connection_location/connections/myconnection

查詢作業會在幾秒內完成,完成後,模型 gemini_model 會顯示在「Explorer」(探索工具) 窗格的 bqml_tutorial 資料集中。由於查詢是使用 CREATE MODEL 陳述式建立模型,因此不會有查詢結果。

執行關鍵字擷取

使用遠端模型和 ML.GENERATE_TEXT 函式,對 IMDB 電影評論執行關鍵字擷取作業:

  1. 前往 Google Cloud 控制台的「BigQuery」頁面。

    前往「BigQuery」

  2. 在查詢編輯器中輸入下列陳述式,對五則電影評論執行關鍵字擷取作業:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));

    輸出內容大致如下,為求清楚起見,已省略非產生的資料欄:

    +----------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                         | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  |                         | Extract the key words from |     |
    | **Negative sentiment:** \"terribly     |                         | the text below: I had to   |     |
    | bad acting\", \"dumb story\", \"not    |                         | see this on the British    |     |
    | even a kid would enjoy this\",         |                         | Airways plane. It was      |     |
    | \"something to switch off\"\n*         |                         | terribly bad acting and    |     |
    | **Context:** \"British Airways plane\" |                         | a dumb story. Not even     |     |
    | \n* **Genre:** \"movie\" (implied)...  |                         | a kid would enjoy this...  |     |
    +----------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  |                         | Extract the key words from |     |
    | **Movie:** The Real Howard Spitz\n*    |                         | the text below: This is    |     |
    | **Genre:** Family movie\n*             |                         | a family movie that was    |     |
    | **Broadcast:** ITV station, 1.00 am\n* |                         | broadcast on my local      |     |
    | **Director:** Vadim Jean\n*            |                         | ITV station at 1.00 am a   |     |
    | **Main character:** Howard Spitz,      |                         | couple of nights ago.      |     |
    | a children's author who hates...       |                         | This might be a strange... |     |
    +----------------------------------------+-------------------------+----------------------------+-----+
    

    結果包含下列資料欄:

    • generated_text:生成的文字。
    • ml_generate_text_status:對應資料列的 API 回應狀態。如果作業成功,這個值會留空。
    • prompt:用於情緒分析的提示。
    • bigquery-public-data.imdb.reviews 資料表中的所有資料欄。
  3. 選用:您不必像上一個步驟一樣手動剖析函式傳回的 JSON,而是使用 flatten_json_output 引數,在不同資料欄中傳回產生的文字和安全性屬性。

    在查詢編輯器中執行下列陳述式:

    SELECT
      *
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens,
          TRUE AS flatten_json_output));

    輸出內容大致如下,為求清楚起見,已省略非產生的資料欄:

    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ml_generate_text_llm_result            | ml_generate_text_rai_result                  | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Keywords:                           |                                              |                         | Extract the key words from |     |
    |                                        |                                              |                         | the text below: I had to   |     |
    | * **Negative sentiment:**              |                                              |                         | see this on the British    |     |
    | "terribly bad acting", "dumb           |                                              |                         | Airways plane. It was      |     |
    | story", "not even a kid would          |                                              |                         | terribly bad acting and    |     |
    | enjoy this", "switch off"              |                                              |                         | a dumb story. Not even     |     |
    | * **Context:** "British                |                                              |                         | a kid would enjoy this...  |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Key words:                          |                                              |                         | Extract the key words from |     |
    |                                        |                                              |                         | the text below: This is    |     |
    | * **Movie:** The Real Howard Spitz     |                                              |                         | a family movie that was    |     |
    | * **Genre:** Family movie              |                                              |                         | broadcast on my local      |     |
    | * **Broadcast:** ITV, 1.00             |                                              |                         | ITV station at 1.00 am a   |     |
    | am                                     |                                              |                         | couple of nights ago.      |     |
    | - ...                                  |                                              |                         | This might be a strange... |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    

    結果包含下列資料欄:

    • ml_generate_text_llm_result:生成的文字。
    • ml_generate_text_rai_result:安全屬性,以及內容是否因其中一個封鎖類別而遭封鎖的相關資訊。如要進一步瞭解安全屬性,請參閱「設定安全篩選機制」。
    • ml_generate_text_status:對應資料列的 API 回應狀態。如果作業成功,這個值會留空。
    • prompt:用於關鍵字擷取的提示。
    • bigquery-public-data.imdb.reviews 資料表中的所有資料欄。

執行情緒分析

使用遠端模型和 ML.GENERATE_TEXT 函式,對 IMDB 電影評論執行情緒分析:

  1. 前往 Google Cloud 控制台的「BigQuery」頁面。

    前往「BigQuery」

  2. 在查詢編輯器中執行下列陳述式,對五則電影評論進行情緒分析:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT(
              'perform sentiment analysis on the following text, return one the following categories: positive, negative: ',
              review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));

    輸出內容大致如下,為求清楚起見,已省略非產生的資料欄:

    +--------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                             | ml_generate_text_status | prompt                     | ... |
    +--------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  |                         | perform sentiment analysis |     |
    | Negative \n\nThis text expresses a         |                         | on the following text,     |     |
    | strongly negative sentiment towards the    |                         | return one the following   |     |
    | movie. Here's why:\n\n* **Negative         |                         | negative: I  had to see    |     |
    | like \"terribly,\" \"dumb,\" and           |                         | this on the British        |     |
    | \"not even\" to describe the acting...     |                         | Airways plane. It was...   |     |
    +--------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  |                         | perform sentiment analysis |     |
    | Negative \n\nThis review expresses a       |                         | on the following text,     |     |
    | predominantly negative sentiment towards   |                         | return one the following   |     |
    | the movie \"The Real Howard Spitz.\"       |                         | categories: positive,      |     |
    | Here's why:\n\n* **Criticism of the film's |                         | negative: This is a family |     |
    | premise:** The reviewer finds it strange   |                         | movie that was broadcast   |     |
    | that a film about a children's author...   |                         | on my local ITV station... |     |
    +--------------------------------------------+-------------------------+----------------------------+-----+
    

    結果包含與「執行關鍵字擷取作業」一節所述相同的資料欄。

清除所用資源

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.