Create Cloud Storage external tables

BigQuery supports querying Cloud Storage data in the following formats:

  • Comma-separated values (CSV)
  • JSON (newline-delimited)
  • Avro
  • ORC
  • Parquet
  • Datastore exports
  • Firestore exports

BigQuery supports querying Cloud Storage data from these storage classes:

  • Standard
  • Nearline
  • Coldline
  • Archive

To query a Cloud Storage external table, you must have permissions on both the external table and the Cloud Storage files. We recommend using a BigLake table instead if possible. BigLake tables provide access delegation, so that you only need permissions on the BigLake table in order to query the Cloud Storage data.

Be sure to consider the location of your dataset and Cloud Storage bucket when you query data stored in Cloud Storage.

Before you begin

Grant Identity and Access Management (IAM) roles that give users the necessary permissions to perform each task in this document. The permissions required to perform a task (if any) are listed in the "Required permissions" section of the task.

Required roles

To create an external table, you need the bigquery.tables.create BigQuery Identity and Access Management (IAM) permission.

Each of the following predefined Identity and Access Management roles includes this permission:

  • BigQuery Data Editor (roles/bigquery.dataEditor)
  • BigQuery Data Owner (roles/bigquery.dataOwner)
  • BigQuery Admin (roles/bigquery.admin)

You also need the following permissions to access the Cloud Storage bucket that contains your data:

  • storage.buckets.get
  • storage.objects.get
  • storage.objects.list (required if you are using a URI wildcard)

The Cloud Storage Storage Admin (roles/storage.admin) predefined Identity and Access Management role includes these permissions.

If you are not a principal in any of these roles, ask your administrator to grant you access or to create the external table for you.

For more information on Identity and Access Management roles and permissions in BigQuery, see Predefined roles and permissions.

Access scopes for Compute Engine instances

If, from a Compute Engine instance, you need to query an external table that is linked to a Cloud Storage source, the instance must have at least the Cloud Storage read-only access scope (https://www.googleapis.com/auth/devstorage.read_only).

The scopes control the Compute Engine instance's access to Google Cloud products, including Cloud Storage. Applications running on the instance use the service account attached to the instance to call Google Cloud APIs.

If you set up a Compute Engine instance to run as the default Compute Engine service account, the instance is by default granted a number of default scopes, including the https://www.googleapis.com/auth/devstorage.read_only scope.

If instead you set up the instance with a custom service account, make sure to explicitly grant the https://www.googleapis.com/auth/devstorage.read_only scope to the instance.

For information about applying scopes to a Compute Engine instance, see Changing the service account and access scopes for an instance. For more information about Compute Engine service accounts, see Service accounts.

Create external tables on unpartitioned data

You can create a permanent table linked to your external data source by:

Select one of the following options:

Console

  1. Go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project and select a dataset.

  3. Expand the Actions option and click Create table.

  4. In the Source section, specify the following details:

    1. For Create table from, select Google Cloud Storage

    2. For Select file from GCS bucket or use a URI pattern, browse to select a bucket and file to use, or type the path in the format gs://bucket_name/[folder_name/]file_name.

      You can't specify multiple URIs in the Google Cloud console, but you can select multiple files by specifying one asterisk (*) wildcard character. For example, gs://mybucket/file_name*. For more information, see Wildcard support for Cloud Storage URIs.

      The Cloud Storage bucket must be in the same location as the dataset that contains the table you're creating.

    3. For File format, select the format that matches your file.

  5. In the Destination section, specify the following details:

    1. For Project, choose the project in which to create the table.

    2. For Dataset, choose the dataset in which to create the table.

    3. For Table, enter the name of the table you are creating.

    4. For Table type, select External table.

  6. In the Schema section, you can either enable schema auto-detection or manually specify a schema if you have a source file. If you don't have a source file, you must manually specify a schema.

    • To enable schema auto-detection, select the Auto-detect option.

    • To manually specify a schema, leave the Auto-detect option unchecked. Enable Edit as text and enter the table schema as a JSON array.

  7. To ignore rows with extra column values that do not match the schema, expand the Advanced options section and select Unknown values.

  8. Click Create table.

After the permanent table is created, you can run a query against the table as if it were a native BigQuery table. After your query completes, you can export the results as CSV or JSON files, save the results as a table, or save the results to Google Sheets.

SQL

You can create a permanent external table by running the CREATE EXTERNAL TABLE DDL statement. You can specify the schema explicitly, or use schema auto-detection to infer the schema from the external data.

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE EXTERNAL TABLE `PROJECT_ID.DATASET.EXTERNAL_TABLE_NAME`
      OPTIONS (
        format ="TABLE_FORMAT",
        uris = ['BUCKET_PATH'[,...]]
        );

    Replace the following:

    • PROJECT_ID: the name of your project in which you want to create the table—for example, myproject
    • DATASET: the name of the BigQuery dataset that you want to create the table in—for example, mydataset
    • EXTERNAL_TABLE_NAME: the name of the table that you want to create—for example, mytable
    • TABLE_FORMAT: the format of the table that you want to create—for example, PARQUET
    • BUCKET_PATH: the path to the Cloud Storage bucket that contains the data for the external table, in the format ['gs://bucket_name/[folder_name/]file_name'].

      You can select multiple files from the bucket by specifying one asterisk (*) wildcard character in the path. For example, ['gs://mybucket/file_name*']. For more information, see Wildcard support for Cloud Storage URIs.

      You can specify multiple buckets for the uris option by providing multiple paths.

      The following examples show valid uris values:

      • ['gs://bucket/path1/myfile.csv']
      • ['gs://bucket/path1/*.csv']
      • ['gs://bucket/path1/*', 'gs://bucket/path2/file00*']

      When you specify uris values that target multiple files, all of those files must share a compatible schema.

      For more information about using Cloud Storage URIs in BigQuery, see Cloud Storage resource path.

  3. Click Run.

For more information about how to run queries, see Run an interactive query.

Examples

The following example uses schema auto-detection to create an external table named sales that is linked to a CSV file stored in Cloud Storage:

CREATE OR REPLACE EXTERNAL TABLE mydataset.sales
  OPTIONS (
  format = 'CSV',
  uris = ['gs://mybucket/sales.csv']);

The next example specifies a schema explicitly and skips the first row in the CSV file:

CREATE OR REPLACE EXTERNAL TABLE mydataset.sales (
  Region STRING,
  Quarter STRING,
  Total_Sales INT64
) OPTIONS (
    format = 'CSV',
    uris = ['gs://mybucket/sales.csv'],
    skip_leading_rows = 1);

bq

To create an external table, use the bq mk command with the --external_table_definition flag. This flag contains either a path to a table definition file or an inline table definition.

Option 1: Table definition file

Use the bq mkdef command to create a table definition file, and then pass the file path to the bq mk command as follows:

bq mkdef --source_format=SOURCE_FORMAT \
  BUCKET_PATH > DEFINITION_FILE

bq mk --table \
  --external_table_definition=DEFINITION_FILE \
  DATASET_NAME.TABLE_NAME \
  SCHEMA

Replace the following:

  • SOURCE_FORMAT: the format of the external data source. For example, CSV.
  • BUCKET_PATH: the path to the Cloud Storage bucket that contains the data for the table, in the format gs://bucket_name/[folder_name/]file_pattern.

    You can select multiple files from the bucket by specifying one asterisk (*) wildcard character in the file_pattern. For example, gs://mybucket/file00*.parquet. For more information, see Wildcard support for Cloud Storage URIs.

    You can specify multiple buckets for the uris option by providing multiple paths.

    The following examples show valid uris values:

    • gs://bucket/path1/myfile.csv
    • gs://bucket/path1/*.parquet
    • gs://bucket/path1/file1*, gs://bucket1/path1/*

    When you specify uris values that target multiple files, all of those files must share a compatible schema.

    For more information about using Cloud Storage URIs in BigQuery, see Cloud Storage resource path.

  • DEFINITION_FILE: the path to the table definition file on your local machine.

  • DATASET_NAME: the name of the dataset that contains the table.

  • TABLE_NAME: the name of the table you're creating.

  • SCHEMA: specifies a path to a JSON schema file, or specifies the schema in the form field:data_type,field:data_type,....

Example:

bq mkdef --source_format=CSV gs://mybucket/sales.csv > mytable_def

bq mk --table --external_table_definition=mytable_def \
  mydataset.mytable \
  Region:STRING,Quarter:STRING,Total_sales:INTEGER

To use schema auto-detection, set the --autodetect=true flag in the mkdef command and omit the schema:

bq mkdef --source_format=CSV --autodetect=true \
  gs://mybucket/sales.csv > mytable_def

bq mk --table --external_table_definition=mytable_def \
  mydataset.mytable

Option 2: Inline table definition

Instead of creating a table definition file, you can pass the table definition directly to the bq mk command:

bq mk --table \
  --external_table_definition=@SOURCE_FORMAT=BUCKET_PATH \
  DATASET_NAME.TABLE_NAME \
  SCHEMA

Replace the following:

  • SOURCE_FORMAT: the format of the external data source

    For example, CSV.

  • BUCKET_PATH: the path to the Cloud Storage bucket that contains the data for the table, in the format gs://bucket_name/[folder_name/]file_pattern.

    You can select multiple files from the bucket by specifying one asterisk (*) wildcard character in the file_pattern. For example, gs://mybucket/file00*.parquet. For more information, see Wildcard support for Cloud Storage URIs.

    You can specify multiple buckets for the uris option by providing multiple paths.

    The following examples show valid uris values:

    • gs://bucket/path1/myfile.csv
    • gs://bucket/path1/*.parquet
    • gs://bucket/path1/file1*, gs://bucket1/path1/*

    When you specify uris values that target multiple files, all of those files must share a compatible schema.

    For more information about using Cloud Storage URIs in BigQuery, see Cloud Storage resource path.

  • DATASET_NAME: the name of the dataset that contains the table.

  • TABLE_NAME: the name of the table you're creating.

  • SCHEMA: specifies a path to a JSON schema file, or specifies the schema in the form field:data_type,field:data_type,.... To use schema auto-detection, omit this argument.

Example:

bq mkdef --source_format=CSV gs://mybucket/sales.csv > mytable_def
bq mk --table --external_table_definition=mytable_def \
  mydataset.mytable \
  Region:STRING,Quarter:STRING,Total_sales:INTEGER

API

Call the tables.insert method API method, and create an ExternalDataConfiguration in the Table resource that you pass in.

Specify the schema property or set the autodetect property to true to enable schema auto detection for supported data sources.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.CsvOptions;
import com.google.cloud.bigquery.ExternalTableDefinition;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
import com.google.cloud.bigquery.TableResult;

// Sample to queries an external data source using a permanent table
public class QueryExternalGCSPerm {

  public static void runQueryExternalGCSPerm() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    String query =
        String.format("SELECT * FROM %s.%s WHERE name LIKE 'W%%'", datasetName, tableName);
    queryExternalGCSPerm(datasetName, tableName, sourceUri, schema, query);
  }

  public static void queryExternalGCSPerm(
      String datasetName, String tableName, String sourceUri, Schema schema, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Skip header row in the file.
      CsvOptions csvOptions = CsvOptions.newBuilder().setSkipLeadingRows(1).build();

      TableId tableId = TableId.of(datasetName, tableName);
      // Create a permanent table linked to the GCS file
      ExternalTableDefinition externalTable =
          ExternalTableDefinition.newBuilder(sourceUri, csvOptions).setSchema(schema).build();
      bigquery.create(TableInfo.of(tableId, externalTable));

      // Example query to find states starting with 'W'
      TableResult results = bigquery.query(QueryJobConfiguration.of(query));

      results
          .iterateAll()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,", val.toString())));

      System.out.println("Query on external permanent table performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryExternalGCSPerm() {
  // Queries an external data source using a permanent table

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the external data source
  const dataConfig = {
    sourceFormat: 'CSV',
    sourceUris: ['gs://cloud-samples-data/bigquery/us-states/us-states.csv'],
    // Optionally skip header row
    csvOptions: {skipLeadingRows: 1},
  };

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    externalDataConfiguration: dataConfig,
  };

  // Create an external table linked to the GCS file
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created.`);

  // Example query to find states starting with 'W'
  const query = `SELECT post_abbr
  FROM \`${datasetId}.${tableId}\`
  WHERE name LIKE 'W%'`;

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(query);
  console.log(`Job ${job.id} started.`);

  // Wait for the query to finish
  const [rows] = await job.getQueryResults();

  // Print the results
  console.log('Rows:');
  console.log(rows);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
table_id = "your-project.your_dataset.your_table_name"

# TODO(developer): Set the external source format of your table.
# Note that the set of allowed values for external data sources is
# different than the set used for loading data (see :class:`~google.cloud.bigquery.job.SourceFormat`).
external_source_format = "AVRO"

# TODO(developer): Set the source_uris to point to your data in Google Cloud
source_uris = [
    "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/a-twitter.avro",
    "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/b-twitter.avro",
    "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/c-twitter.avro",
]

# Create ExternalConfig object with external source format
external_config = bigquery.ExternalConfig(external_source_format)
# Set source_uris that point to your data in Google Cloud
external_config.source_uris = source_uris

# TODO(developer) You have the option to set a reference_file_schema_uri, which points to
# a reference file for the table schema
reference_file_schema_uri = "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/b-twitter.avro"

external_config.reference_file_schema_uri = reference_file_schema_uri

table = bigquery.Table(table_id)
# Set the external data configuration of the table
table.external_data_configuration = external_config
table = client.create_table(table)  # Make an API request.

print(
    f"Created table with external source format {table.external_data_configuration.source_format}"
)

Create external tables on partitioned data

You can create an external table for Hive partitioned data that resides in Cloud Storage. After you create an externally partitioned table, you can't change the partition key. You need to recreate the table to change the partition key.

To create an external table for Hive partitioned data, choose one of the following options:

Console

  1. In the Google Cloud console, go to BigQuery.

    Go to BigQuery

  2. In the Explorer pane, expand your project and select a dataset.
  3. Click View actions, and then click Create table. This opens the Create table pane.
  4. In the Source section, specify the following details:
    1. For Create table from, select Google Cloud Storage.
    2. For Select file from Cloud Storage bucket, enter the path to the Cloud Storage folder, using wildcards. For example, my_bucket/my_files*. The Cloud Storage bucket must be in the same location as the dataset that contains the table you want to create, append, or overwrite.
    3. From the File format list, select the file type.
    4. Select the Source data partitioning checkbox, and then for Select Source URI Prefix, enter the Cloud Storage URI prefix. For example, gs://my_bucket/my_files.
    5. In the Partition inference mode section, select one of the following options:
      • Automatically infer types: set the partition schema detection mode to AUTO.
      • All columns are strings: set the partition schema detection mode to STRINGS.
      • Provide my own: set the partition schema detection mode to CUSTOM and manually enter the schema information for the partition keys. For more information, see Provide a custom partition key schema.
    6. Optional: To require a partition filter on all queries for this table, select the Require partition filter checkbox. Requiring a partition filter can reduce cost and improve performance. For more information, see Requiring predicate filters on partition keys in queries.
  5. In the Destination section, specify the following details:
    1. For Project, select the project in which you want to create the table.
    2. For Dataset, select the dataset in which you want to create the table.
    3. For Table, enter the name of the table that you want to create.
    4. For Table type, select External table.
  6. In the Schema section, enter the schema definition.
  7. To enable the auto detection of schema, select Auto detect.
  8. To ignore rows with extra column values that do not match the schema, expand the Advanced options section and select Unknown values.
  9. Click Create table.

SQL

Use the CREATE EXTERNAL TABLE DDL statement.

The following example uses automatic detection of Hive partition keys:

CREATE EXTERNAL TABLE `PROJECT_ID.DATASET.EXTERNAL_TABLE_NAME`
WITH PARTITION COLUMNS
OPTIONS (
format = 'SOURCE_FORMAT',
uris = ['GCS_URIS'],
hive_partition_uri_prefix = 'GCS_URI_SHARED_PREFIX',
require_hive_partition_filter = BOOLEAN);

Replace the following:

  • SOURCE_FORMAT: the format of the external data source, such as PARQUET
  • GCS_URIS: the path to the Cloud Storage folder, using wildcard format
  • GCS_URI_SHARED_PREFIX: the source URI prefix without the wildcard
  • BOOLEAN: whether to require a predicate filter at query time. This flag is optional. The default value is false.

The following example uses custom Hive partition keys and types by listing them in the WITH PARTITION COLUMNS clause:

CREATE EXTERNAL TABLE `PROJECT_ID.DATASET.EXTERNAL_TABLE_NAME`
WITH PARTITION COLUMNS (PARTITION_COLUMN_LIST)
OPTIONS (
format = 'SOURCE_FORMAT',
uris = ['GCS_URIS'],
hive_partition_uri_prefix = 'GCS_URI_SHARED_PREFIX',
require_hive_partition_filter = BOOLEAN);

Replace the following:

  • PARTITION_COLUMN_LIST: a list of columns following the same order in the path of Cloud Storage folder, in the format of:
KEY1 TYPE1, KEY2 TYPE2

The following example creates an externally partitioned table. It uses schema auto-detection to detect both the file schema and the hive partitioning layout. If the external path is gs://bucket/path/field_1=first/field_2=1/data.parquet, the partition columns are detected as field_1 (STRING) and field_2 (INT64).

CREATE EXTERNAL TABLE dataset.AutoHivePartitionedTable
WITH PARTITION COLUMNS
OPTIONS (
uris = ['gs://bucket/path/*'],
format = 'PARQUET',
hive_partition_uri_prefix = 'gs://bucket/path',
require_hive_partition_filter = false);

The following example creates an externally partitioned table by explicitly specifying the partition columns. This example assumes that the external file path has the pattern gs://bucket/path/field_1=first/field_2=1/data.parquet.

CREATE EXTERNAL TABLE dataset.CustomHivePartitionedTable
WITH PARTITION COLUMNS (
field_1 STRING, -- column order must match the external path
field_2 INT64)
OPTIONS (
uris = ['gs://bucket/path/*'],
format = 'PARQUET',
hive_partition_uri_prefix = 'gs://bucket/path',
require_hive_partition_filter = false);

bq

First, use the bq mkdef command to create a table definition file:

bq mkdef \
--source_format=SOURCE_FORMAT \
--hive_partitioning_mode=PARTITIONING_MODE \
--hive_partitioning_source_uri_prefix=GCS_URI_SHARED_PREFIX \
--require_hive_partition_filter=BOOLEAN \
 GCS_URIS > DEFINITION_FILE

Replace the following:

  • SOURCE_FORMAT: the format of the external data source. For example, CSV.
  • PARTITIONING_MODE: the Hive partitioning mode. Use one of the following values:
    • AUTO: Automatically detect the key names and types.
    • STRINGS: Automatically convert the key names to strings.
    • CUSTOM: Encode the key schema in the source URI prefix.
  • GCS_URI_SHARED_PREFIX: the source URI prefix.
  • BOOLEAN: specifies whether to require a predicate filter at query time. This flag is optional. The default value is false.
  • GCS_URIS: the path to the Cloud Storage folder, using wildcard format.
  • DEFINITION_FILE: the path to the table definition file on your local machine.

If PARTITIONING_MODE is CUSTOM, include the partition key schema in the source URI prefix, using the following format:

--hive_partitioning_source_uri_prefix=GCS_URI_SHARED_PREFIX/{KEY1:TYPE1}/{KEY2:TYPE2}/...

After you create the table definition file, use the bq mk command to create the external table:

bq mk --external_table_definition=DEFINITION_FILE \
DATASET_NAME.TABLE_NAME \
SCHEMA

Replace the following:

  • DEFINITION_FILE: the path to the table definition file.
  • DATASET_NAME: the name of the dataset that contains the table.
  • TABLE_NAME: the name of the table you're creating.
  • SCHEMA: specifies a path to a JSON schema file, or specifies the schema in the form field:data_type,field:data_type,.... To use schema auto-detection, omit this argument.

Examples

The following example uses AUTO Hive partitioning mode:

bq mkdef --source_format=CSV \
  --hive_partitioning_mode=AUTO \
  --hive_partitioning_source_uri_prefix=gs://myBucket/myTable \
  gs://myBucket/myTable/* > mytable_def

bq mk --external_table_definition=mytable_def \
  mydataset.mytable \
  Region:STRING,Quarter:STRING,Total_sales:INTEGER

The following example uses STRING Hive partitioning mode:

bq mkdef --source_format=CSV \
  --hive_partitioning_mode=STRING \
  --hive_partitioning_source_uri_prefix=gs://myBucket/myTable \
  gs://myBucket/myTable/* > mytable_def

bq mk --external_table_definition=mytable_def \
  mydataset.mytable \
  Region:STRING,Quarter:STRING,Total_sales:INTEGER

The following example uses CUSTOM Hive partitioning mode:

bq mkdef --source_format=CSV \
  --hive_partitioning_mode=CUSTOM \
  --hive_partitioning_source_uri_prefix=gs://myBucket/myTable/{dt:DATE}/{val:STRING} \
  gs://myBucket/myTable/* > mytable_def

bq mk --external_table_definition=mytable_def \
  mydataset.mytable \
  Region:STRING,Quarter:STRING,Total_sales:INTEGER

API

To set Hive partitioning using the BigQuery API, include a hivePartitioningOptions object in the ExternalDataConfiguration object when you create the table definition file.

If you set the hivePartitioningOptions.mode field to CUSTOM, you must encode the partition key schema in the hivePartitioningOptions.sourceUriPrefix field as follows: gs://BUCKET/PATH_TO_TABLE/{KEY1:TYPE1}/{KEY2:TYPE2}/...

To enforce the use of a predicate filter at query time, set the hivePartitioningOptions.requirePartitionFilter field to true.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.ExternalTableDefinition;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.HivePartitioningOptions;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create external table using hive partitioning
public class SetHivePartitioningOptions {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/hive-partitioning-samples/customlayout/*";
    String sourceUriPrefix =
        "gs://cloud-samples-data/bigquery/hive-partitioning-samples/customlayout/{pkey:STRING}/";
    setHivePartitioningOptions(datasetName, tableName, sourceUriPrefix, sourceUri);
  }

  public static void setHivePartitioningOptions(
      String datasetName, String tableName, String sourceUriPrefix, String sourceUri) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Configuring partitioning options
      HivePartitioningOptions hivePartitioningOptions =
          HivePartitioningOptions.newBuilder()
              .setMode("CUSTOM")
              .setRequirePartitionFilter(true)
              .setSourceUriPrefix(sourceUriPrefix)
              .build();

      TableId tableId = TableId.of(datasetName, tableName);
      ExternalTableDefinition customTable =
          ExternalTableDefinition.newBuilder(sourceUri, FormatOptions.parquet())
              .setAutodetect(true)
              .setHivePartitioningOptions(hivePartitioningOptions)
              .build();
      bigquery.create(TableInfo.of(tableId, customTable));
      System.out.println("External table created using hivepartitioningoptions");
    } catch (BigQueryException e) {
      System.out.println("External table was not created" + e.toString());
    }
  }
}

Query external tables

For more information, see Query Cloud Storage data in external tables.

Upgrade external tables to BigLake

You can upgrade tables based on Cloud Storage to BigLake tables by associating the external table to a connection. If you want to use metadata caching with the BigLake table, you can specify settings for this at the same time. To get table details such as source format and source URI, see Get table information.

To update an external table to a BigLake table, select one of the following options:

SQL

Use the CREATE OR REPLACE EXTERNAL TABLE DDL statement to update a table:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE OR REPLACE EXTERNAL TABLE
      `PROJECT_ID.DATASET.EXTERNAL_TABLE_NAME`
      WITH CONNECTION `REGION.CONNECTION_ID`
      OPTIONS(
        format ="TABLE_FORMAT",
        uris = ['BUCKET_PATH'],
        max_staleness = STALENESS_INTERVAL,
        metadata_cache_mode = 'CACHE_MODE'
        );

    Replace the following:

    • PROJECT_ID: the name of the project that contains the table
    • DATASET: the name of the dataset that contains the table
    • EXTERNAL_TABLE_NAME: the name of the table
    • REGION: the region that contains the connection
    • CONNECTION_ID: the name of the connection to use
    • TABLE_FORMAT: the format used by the table

      You can't change this when updating the table.

    • BUCKET_PATH: the path to the Cloud Storage bucket that contains the data for the external table, in the format ['gs://bucket_name/[folder_name/]file_name'].

      You can select multiple files from the bucket by specifying one asterisk (*) wildcard character in the path. For example, ['gs://mybucket/file_name*']. For more information, see Wildcard support for Cloud Storage URIs.

      You can specify multiple buckets for the uris option by providing multiple paths.

      The following examples show valid uris values:

      • ['gs://bucket/path1/myfile.csv']
      • ['gs://bucket/path1/*.csv']
      • ['gs://bucket/path1/*', 'gs://bucket/path2/file00*']

      When you specify uris values that target multiple files, all of those files must share a compatible schema.

      For more information about using Cloud Storage URIs in BigQuery, see Cloud Storage resource path.

    • STALENESS_INTERVAL: specifies whether cached metadata is used by operations against the table, and how fresh the cached metadata must be in order for the operation to use it

      For more information about metadata caching considerations, see Metadata caching for performance.

      To disable metadata caching, specify 0. This is the default.

      To enable metadata caching, specify an interval literal value between 30 minutes and 7 days. For example, specify INTERVAL 4 HOUR for a 4 hour staleness interval. With this value, operations against the table use cached metadata if it has been refreshed within the past 4 hours. If the cached metadata is older than that, the operation retrieves metadata from Cloud Storage instead.

    • CACHE_MODE: specifies whether the metadata cache is refreshed automatically or manually

      For more information on metadata caching considerations, see Metadata caching for performance.

      Set to AUTOMATIC for the metadata cache to be refreshed at a system-defined interval, usually somewhere between 30 and 60 minutes.

      Set to MANUAL if you want to refresh the metadata cache on a schedule you determine. In this case, you can call the BQ.REFRESH_EXTERNAL_METADATA_CACHE system procedure to refresh the cache.

      You must set CACHE_MODE if STALENESS_INTERVAL is set to a value greater than 0.

  3. Click Run.

For more information about how to run queries, see Run an interactive query.

bq

Use the bq mkdef and bq update commands to update a table:

  1. Generate an external table definition, that describes the aspects of the table to change:

    bq mkdef --connection_id=PROJECT_ID.REGION.CONNECTION_ID \
    --source_format=TABLE_FORMAT \
    --metadata_cache_mode=CACHE_MODE \
    "BUCKET_PATH" > /tmp/DEFINITION_FILE

    Replace the following:

    • PROJECT_ID: the name of the project that contains the connection
    • REGION: the region that contains the connection
    • CONNECTION_ID: the name of the connection to use
    • TABLE_FORMAT: the format used by the table. You can't change this when updating the table.
    • CACHE_MODE: specifies whether the metadata cache is refreshed automatically or manually. For more information on metadata caching considerations, see Metadata caching for performance.

      Set to AUTOMATIC for the metadata cache to be refreshed at a system-defined interval, usually somewhere between 30 and 60 minutes.

      Set to MANUAL if you want to refresh the metadata cache on a schedule you determine. In this case, you can call the BQ.REFRESH_EXTERNAL_METADATA_CACHE system procedure to refresh the cache.

      You must set CACHE_MODE if STALENESS_INTERVAL is set to a value greater than 0.

    • BUCKET_PATH: the path to the Cloud Storage bucket that contains the data for the external table, in the format gs://bucket_name/[folder_name/]file_name.

      You can limit the files selected from the bucket by specifying one asterisk (*) wildcard character in the path. For example, gs://mybucket/file_name*. For more information, see Wildcard support for Cloud Storage URIs.

      You can specify multiple buckets for the uris option by providing multiple paths.

      The following examples show valid uris values:

      • gs://bucket/path1/myfile.csv
      • gs://bucket/path1/*.csv
      • gs://bucket/path1/*,gs://bucket/path2/file00*

      When you specify uris values that target multiple files, all of those files must share a compatible schema.

      For more information about using Cloud Storage URIs in BigQuery, see Cloud Storage resource path.

    • DEFINITION_FILE: the name of the table definition file that you are creating.

  2. Update the table using the new external table definition:

    bq update --max_staleness=STALENESS_INTERVAL \
    --external_table_definition=/tmp/DEFINITION_FILE \
    PROJECT_ID:DATASET.EXTERNAL_TABLE_NAME

    Replace the following:

    • STALENESS_INTERVAL: specifies whether cached metadata is used by operations against the table, and how fresh the cached metadata must be in order for the operation to use it. For more information about metadata caching considerations, see Metadata caching for performance.

      To disable metadata caching, specify 0. This is the default.

      To enable metadata caching, specify an interval value between 30 minutes and 7 days, using the Y-M D H:M:S format described in the INTERVAL data type documentation. For example, specify 0-0 0 4:0:0 for a 4 hour staleness interval. With this value, operations against the table use cached metadata if it has been refreshed within the past 4 hours. If the cached metadata is older than that, the operation retrieves metadata from Cloud Storage instead.

    • DEFINITION_FILE: the name of the table definition file that you created or updated.

    • PROJECT_ID: the name of the project that contains the table

    • DATASET: the name of the dataset that contains the table

    • EXTERNAL_TABLE_NAME: the name of the table

Cloud Storage resource path

When you create an external table based on a Cloud Storage data source, you must provide the path to the data.

The Cloud Storage resource path contains your bucket name and your object (filename). For example, if the Cloud Storage bucket is named mybucket and the data file is named myfile.csv, the resource path would be gs://mybucket/myfile.csv.

BigQuery does not support Cloud Storage resource paths that include multiple consecutive slashes after the initial double slash. Cloud Storage object names can contain multiple consecutive slash ("/") characters. However, BigQuery converts multiple consecutive slashes into a single slash. For example, the following resource path, though valid in Cloud Storage, does not work in BigQuery: gs://bucket/my//object//name.

To retrieve the Cloud Storage resource path:

  1. Open the Cloud Storage console.

    Cloud Storage console

  2. Browse to the location of the object (file) that contains the source data.

  3. Click on the name of the object.

    The Object details page opens.

  4. Copy the value provided in the gsutil URI field, which begins with gs://.

Wildcard support for Cloud Storage URIs

If your data is separated into multiple files, you can use an asterisk (*) wildcard to select multiple files. Use of the asterisk wildcard must follow these rules:

  • The asterisk can appear inside the object name or at the end of the object name.
  • Using multiple asterisks is unsupported. For example, the path gs://mybucket/fed-*/temp/*.csv is invalid.
  • Using an asterisk with the bucket name is unsupported.

Examples:

  • The following example shows how to select all of the files in all the folders which start with the prefix gs://mybucket/fed-samples/fed-sample:

    gs://mybucket/fed-samples/fed-sample*
    
  • The following example shows how to select only files with a .csv extension in the folder named fed-samples and any subfolders of fed-samples:

    gs://mybucket/fed-samples/*.csv
    
  • The following example shows how to select files with a naming pattern of fed-sample*.csv in the folder named fed-samples. This example doesn't select files in subfolders of fed-samples.

    gs://mybucket/fed-samples/fed-sample*.csv
    

When using the bq command-line tool, you might need to escape the asterisk on some platforms.

You can't use an asterisk wildcard when you create external tables linked to Datastore or Firestore exports.

Limitations

For information about limitations that apply to external tables, see External table limitations.

What's next