이 문서에서는 BigQuery ML이 머신러닝(ML) 모델 평가를 지원하는 방식을 설명합니다.
모델 평가 개요
다음과 같은 목적으로 ML 모델 평가 측정항목을 사용할 수 있습니다.
모델과 데이터 사이의 적합성 품질을 평가합니다.
여러 모델을 비교합니다.
모델 선택의 맥락에서 특정 데이터 세트에서 각 모델의 성능을 정확히 예측합니다.
지도 학습 모델 평가와 비지도 학습 모델 평가는 서로 다르게 작동합니다.
지도 학습 모델의 경우 모델 평가가 잘 정의된 방식으로 이뤄집니다. 모델에서 분석되지 않은 데이터에 해당하는 평가 세트는 일반적으로 학습 세트에서 제외되며 모델 성능을 평가하는 데 사용됩니다. 새 데이터에 대해 예측 결과를 일반화할 때 모델 성능이 저하되기 때문에 평가에 학습 세트를 사용하지 않는 것이 좋습니다. 이러한 결과를 과적합이라고 합니다.
비지도 학습 모델의 경우 모델 평가가 잘 정의되지 않은 방식으로 수행되고 일반적으로 모델마다 다르게 수행됩니다. 비지도 학습 모델에서는 평가 세트가 보존되지 않으므로 전체 입력 데이터 세트를 사용하여 평가 측정항목이 계산됩니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[[["\u003cp\u003eBigQuery ML supports model evaluation to assess model-data fit, compare models, and predict model performance on new datasets.\u003c/p\u003e\n"],["\u003cp\u003eSupervised learning models utilize a separate evaluation set to prevent overfitting, while unsupervised learning models use the entire input dataset for evaluation.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML offers a variety of \u003ccode\u003eML.EVALUATE\u003c/code\u003e functions to calculate evaluation metrics for supervised and unsupervised models such as regressions, classifications, and clustering, each providing model-specific results.\u003c/p\u003e\n"],["\u003cp\u003eModel evaluation can be done automatically during model creation using reserved evaluation or test datasets based on the model type and chosen data split options, or with new data after creation.\u003c/p\u003e\n"],["\u003cp\u003eSpecific functions such as \u003ccode\u003eML.CONFUSION_MATRIX\u003c/code\u003e and \u003ccode\u003eML.ROC_CURVE\u003c/code\u003e are available for a more granular evaluation, including confusion matrices and metrics for different threshold values, respectively.\u003c/p\u003e\n"]]],[],null,["# BigQuery ML model evaluation overview\n=====================================\n\nThis document describes how BigQuery ML supports machine learning (ML)\nmodel evaluation.\n\nOverview of model evaluation\n----------------------------\n\nYou can use ML model evaluation metrics for the following\npurposes:\n\n- To assess the quality of the fit between the model and the data.\n- To compare different models.\n- To predict how accurately you can expect each model to perform on a specific dataset, in the context of model selection.\n\nSupervised and unsupervised learning model evaluations work differently:\n\n- For supervised learning models, model evaluation is well-defined. An evaluation set, which is data that hasn't been analyzed by the model, is typically excluded from the training set and then used to evaluate model performance. We recommend that you don't use the training set for evaluation because this causes the model to perform poorly when generalizing the prediction results for new data. This outcome is known as *overfitting*.\n- For unsupervised learning models, model evaluation is less defined and typically varies from model to model. Because unsupervised learning models don't reserve an evaluation set, the evaluation metrics are calculated using the whole input dataset.\n\nFor information about the supported SQL statements and functions for each\nmodel type, see\n[End-to-end user journey for each model](/bigquery/docs/e2e-journey).\n\nModel evaluation offerings\n--------------------------\n\nBigQuery ML provides the following functions to calculate\nevaluation metrics for ML models:\n\nAutomatic evaluation in `CREATE MODEL` statements\n-------------------------------------------------\n\nBigQuery ML supports automatic evaluation during model creation.\nDepending on the model type, the data split training options, and whether you're\nusing hyperparameter tuning, the evaluation metrics are calculated upon\nthe reserved evaluation dataset, the reserved test dataset, or the entire input\ndataset.\n\n- For k-means, PCA, autoencoder, and ARIMA_PLUS models, BigQuery ML\n uses all of the input data as training data, and evaluation metrics are\n calculated against the entire input dataset.\n\n- For linear and logistic regression, boosted tree, random forest, DNN,\n Wide-and-deep, and matrix factorization models, evaluation metrics are\n calculated against the dataset that's specified by the following\n `CREATE MODEL` options:\n\n - [`DATA_SPLIT_METHOD`](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm#data_split_method)\n - [`DATA_SPLIT_EVAL_FRACTION`](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm#data_split_eval_fraction)\n - [`DATA_SPLIT_COL`](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm#data_split_col)\n\n When you train these types of models using hyperparameter tuning, the\n [`DATA_SPLIT_TEST_FRACTION`](/bigquery/docs/reference/standard-sql/bigqueryml-hyperparameter-tuning#data_split) option also helps\n define the dataset that the evaluation metrics are calculated against. For\n more information, see\n [Data split](/bigquery/docs/reference/standard-sql/bigqueryml-hyperparameter-tuning#data_split).\n- For AutoML Tables models, see\n [how data splits are used](/automl-tables/docs/prepare#how_data_splits_are_used)\n for training and evaluation.\n\nTo get evaluation metrics calculated during model creation, use evaluation\nfunctions such as `ML.EVALUATE` on the model with no input data specified.\nFor an example, see\n[`ML.EVALUATE` with no input data specified](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate#mlevaluate_with_no_input_data_specified).\n\nEvaluation with a new dataset\n-----------------------------\n\nAfter model creation, you can specify new datasets for evaluation. To provide\na new dataset, use evaluation functions like `ML.EVALUATE` on the model with\ninput data specified. For an example, see\n[`ML.EVALUATE` with a custom threshold and input data](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate#mlevaluate_with_a_custom_threshold_and_input_data)."]]