Mencoba DataFrames BigQuery
Gunakan panduan memulai ini untuk melakukan analisis dan tugas machine learning (ML) berikut menggunakan BigQuery DataFrames API di notebook BigQuery:
- Buat DataFrame melalui set data publik
bigquery-public-data.ml_datasets.penguins
. - Hitung massa tubuh rata-rata penguin.
- Buat model regresi linear.
- Buat DataFrame di atas subset data penguin untuk digunakan sebagai data pelatihan.
- Bersihkan data pelatihan.
- Setel parameter model.
- Sesuaikan modelnya.
- Beri skor modelnya.
Sebelum memulai
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
Pastikan BigQuery API diaktifkan.
Jika Anda membuat project baru, BigQuery API akan otomatis diaktifkan.
- Pengguna BigQuery (
roles/bigquery.user
) - Pengguna Runtime Notebook (
roles/aiplatform.notebookRuntimeUser
) - Pembuat Kode (
roles/dataform.codeCreator
) - Buat sel kode baru di notebook.
Salin kode berikut dan tempelkan ke dalam sel kode:
import bigframes.pandas as bpd # Set BigQuery DataFrames options # Note: The project option is not required in all environments. # On BigQuery Studio, the project ID is automatically detected. bpd.options.bigquery.project = your_gcp_project_id # Use "partial" ordering mode to generate more efficient queries, but the # order of the rows in DataFrames may not be deterministic if you have not # explictly sorted it. Some operations that depend on the order, such as # head() will not function until you explictly order the DataFrame. Set the # ordering mode to "strict" (default) for more pandas compatibility. bpd.options.bigquery.ordering_mode = "partial" # Create a DataFrame from a BigQuery table query_or_table = "bigquery-public-data.ml_datasets.penguins" df = bpd.read_gbq(query_or_table) # Efficiently preview the results using the .peek() method. df.peek() # Use the DataFrame just as you would a pandas DataFrame, but calculations # happen in the BigQuery query engine instead of the local system. average_body_mass = df["body_mass_g"].mean() print(f"average_body_mass: {average_body_mass}") # Create the Linear Regression model from bigframes.ml.linear_model import LinearRegression # Filter down to the data we want to analyze adelie_data = df[df.species == "Adelie Penguin (Pygoscelis adeliae)"] # Drop the columns we don't care about adelie_data = adelie_data.drop(columns=["species"]) # Drop rows with nulls to get our training data training_data = adelie_data.dropna() # Pick feature columns and label column X = training_data[ [ "island", "culmen_length_mm", "culmen_depth_mm", "flipper_length_mm", "sex", ] ] y = training_data[["body_mass_g"]] model = LinearRegression(fit_intercept=False) model.fit(X, y) model.score(X, y)
Ubah baris
bpd.options.bigquery.project = your_gcp_project_id
untuk menentukan project Anda, misalnyabpd.options.bigquery.project = "myproject"
.Jalankan sel kode.
Sel kode menampilkan massa tubuh rata-rata untuk penguin dalam set data, lalu menampilkan metrik evaluasi untuk model tersebut.
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
- Lanjutkan mempelajari cara menggunakan DataFrame BigQuery.
- Pelajari cara memvisualisasikan grafik menggunakan DataFrame BigQuery.
- Pelajari cara menggunakan notebook BigQuery DataFrames.
Izin yang diperlukan
Untuk membuat dan menjalankan notebook, Anda memerlukan peran Identity and Access Management (IAM) berikut:
Membuat notebook
Ikuti petunjuk di Membuat notebook dari editor BigQuery untuk membuat notebook baru.
Mencoba DataFrames BigQuery
Coba DataFrames BigQuery dengan mengikuti langkah-langkah berikut:
Pembersihan
Cara termudah untuk menghilangkan penagihan adalah dengan menghapus project yang Anda buat untuk tutorial.
Untuk menghapus project: