Mencoba DataFrames BigQuery
Gunakan panduan memulai ini untuk melakukan analisis dan tugas machine learning (ML) berikut menggunakan BigQuery DataFrames API di notebook BigQuery:
- Buat DataFrame melalui set data publik bigquery-public-data.ml_datasets.penguins.
- Hitung massa tubuh rata-rata penguin.
- Buat model regresi linear.
- Buat DataFrame di atas subset data penguin untuk digunakan sebagai data pelatihan.
- Bersihkan data pelatihan.
- Setel parameter model.
- Sesuaikan modelnya.
- Beri skor modelnya.
Sebelum memulai
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
- 
    
    
      In the Google Cloud console, on the project selector page, select or create a Google Cloud project. Roles required to select or create a project - Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
- 
      Create a project: To create a project, you need the Project Creator
      (roles/resourcemanager.projectCreator), which contains theresourcemanager.projects.createpermission. Learn how to grant roles.
 
- 
    
    
      In the Google Cloud console, on the project selector page, select or create a Google Cloud project. Roles required to select or create a project - Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
- 
      Create a project: To create a project, you need the Project Creator
      (roles/resourcemanager.projectCreator), which contains theresourcemanager.projects.createpermission. Learn how to grant roles.
 
- 
  
    Verify that billing is enabled for your Google Cloud project. 
- Pastikan BigQuery API diaktifkan. - Jika Anda membuat project baru, BigQuery API akan otomatis diaktifkan. 
- Pengguna BigQuery (roles/bigquery.user)
- Pengguna Runtime Notebook (roles/aiplatform.notebookRuntimeUser)
- Pembuat Kode (roles/dataform.codeCreator)
- Buat sel kode baru di notebook.
- Tambahkan kode berikut ke sel kode: - import bigframes.pandas as bpd # Set BigQuery DataFrames options # Note: The project option is not required in all environments. # On BigQuery Studio, the project ID is automatically detected. bpd.options.bigquery.project = your_gcp_project_id # Use "partial" ordering mode to generate more efficient queries, but the # order of the rows in DataFrames may not be deterministic if you have not # explictly sorted it. Some operations that depend on the order, such as # head() will not function until you explictly order the DataFrame. Set the # ordering mode to "strict" (default) for more pandas compatibility. bpd.options.bigquery.ordering_mode = "partial" # Create a DataFrame from a BigQuery table query_or_table = "bigquery-public-data.ml_datasets.penguins" df = bpd.read_gbq(query_or_table) # Efficiently preview the results using the .peek() method. df.peek()
- Ubah baris - bpd.options.bigquery.project = your_gcp_project_iduntuk menentukan Google Cloud project ID Anda. Contohnya,- bpd.options.bigquery.project = "myProjectID".
- Jalankan sel kode. - Kode ini menampilkan objek - DataFramedengan data tentang penguin.
- Buat sel kode baru di notebook dan tambahkan kode berikut: - # Use the DataFrame just as you would a pandas DataFrame, but calculations # happen in the BigQuery query engine instead of the local system. average_body_mass = df["body_mass_g"].mean() print(f"average_body_mass: {average_body_mass}")
- Jalankan sel kode. - Kode menghitung massa tubuh rata-rata penguin dan mencetaknya ke konsolGoogle Cloud . 
- Buat sel kode baru di notebook dan tambahkan kode berikut: - # Create the Linear Regression model from bigframes.ml.linear_model import LinearRegression # Filter down to the data we want to analyze adelie_data = df[df.species == "Adelie Penguin (Pygoscelis adeliae)"] # Drop the columns we don't care about adelie_data = adelie_data.drop(columns=["species"]) # Drop rows with nulls to get our training data training_data = adelie_data.dropna() # Pick feature columns and label column X = training_data[ [ "island", "culmen_length_mm", "culmen_depth_mm", "flipper_length_mm", "sex", ] ] y = training_data[["body_mass_g"]] model = LinearRegression(fit_intercept=False) model.fit(X, y) model.score(X, y)
- Jalankan sel kode. - Kode menampilkan metrik evaluasi model. 
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
- Lanjutkan mempelajari cara menggunakan DataFrame BigQuery.
- Pelajari cara memvisualisasikan grafik menggunakan DataFrame BigQuery.
- Pelajari cara menggunakan notebook BigQuery DataFrames.
Izin yang diperlukan
Untuk membuat dan menjalankan notebook, Anda memerlukan peran Identity and Access Management (IAM) berikut:
Membuat notebook
Ikuti petunjuk di Membuat notebook dari editor BigQuery untuk membuat notebook baru.
Mencoba DataFrames BigQuery
Coba DataFrames BigQuery dengan mengikuti langkah-langkah berikut:
Pembersihan
Cara termudah untuk menghilangkan penagihan adalah dengan menghapus project yang Anda buat untuk tutorial.
Untuk menghapus project: