Prévisions de séries temporelles multivariées à partir de données sur la qualité de l'air à Seattle


Dans ce tutoriel, vous allez apprendre à créer un modèle de série temporelle multivariée (ARIMA_PLUS_XREG) pour effectuer des prévisions de séries temporelles à l'aide des exemples de tables suivants, issus de l'ensemble de données epa_historical_air_quality :

L'ensemble de données epa_historical_air_quality contient des informations quotidiennes sur la concentration de particules fines PM2,5, la température et la vitesse du vent, collectées par plusieurs villes américaines.

Objectifs

Dans ce tutoriel, vous allez utiliser :

  • l'instruction CREATE MODEL, pour créer un modèle de série temporelle ;
  • la fonction ML.ARIMA_EVALUATE, pour inspecter les informations d'évaluation associées à la modélisation ARIMA dans le modèle ;
  • la fonction ML.ARIMA_COEFFICIENTS, pour inspecter les coefficients du modèle ;
  • la fonction ML.FORECAST, pour prévoir la concentration quotidienne de particules fines PM2,5 ;
  • la fonction ML.EVALUATE, pour évaluer le modèle avec des données réelles.
  • la fonction ML.EXPLAIN_FORECAST, pour récupérer divers composants de la série temporelle (par exemple, la saisonnalité, l'attribution de tendances et les caractéristiques) que vous pouvez utiliser pour expliquer les résultats des prévisions.

Coûts

Ce tutoriel utilise des composants facturables de Google Cloud, y compris :

  • BigQuery
  • BigQuery ML

Pour plus d'informations sur les coûts de BigQuery, consultez la page Tarifs de BigQuery.

Pour en savoir plus sur les coûts associés à BigQuery ML, consultez la page Tarifs de BigQuery ML.

Avant de commencer

  1. Connectez-vous à votre compte Google Cloud. Si vous débutez sur Google Cloud, créez un compte pour évaluer les performances de nos produits en conditions réelles. Les nouveaux clients bénéficient également de 300 $ de crédits gratuits pour exécuter, tester et déployer des charges de travail.
  2. Dans Google Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Google Cloud.

    Accéder au sélecteur de projet

  3. Vérifiez que la facturation est activée pour votre projet Google Cloud.

  4. Dans Google Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Google Cloud.

    Accéder au sélecteur de projet

  5. Vérifiez que la facturation est activée pour votre projet Google Cloud.

  6. BigQuery est automatiquement activé dans les nouveaux projets. Pour activer BigQuery dans un projet préexistant, accédez à

    Activez l'API BigQuery

    Activer l'API

Étape 1 : Créer un ensemble de données

Vous allez créer un ensemble de données BigQuery pour stocker votre modèle de ML :

  1. Dans la console Google Cloud, accédez à la page "BigQuery".

    Accéder à la page "BigQuery"

  2. Dans le volet Explorateur, cliquez sur le nom de votre projet.

  3. Cliquez sur Afficher les actions > Créer un ensemble de données.

    Créer l'ensemble de données

  4. Sur la page Créer un ensemble de données, procédez comme suit :

    • Dans le champ ID de l'ensemble de données, saisissez bqml_tutorial.

    • Pour Type d'emplacement, sélectionnez Multirégional, puis sélectionnez US (plusieurs régions aux États-Unis).

      Les ensembles de données publics sont stockés dans l'emplacement multirégional US. Par souci de simplicité, stockez votre ensemble de données dans le même emplacement.

    • Conservez les autres paramètres par défaut, puis cliquez sur Créer un ensemble de données.

      Créer une page d'ensemble de données

Étape 2 : Créer une table de série temporelle avec des fonctionnalités supplémentaires

Les données de concentration de particules fines PM2.5, de température et de vitesse du vent sont situées dans des tables distinctes. Pour simplifier les requêtes suivantes, vous pouvez créer une table bqml_tutorial.seattle_air_quality_daily en vue de combiner ces tables, qui va contenir les colonnes suivantes :

  • date : date de l'observation
  • PM2.5 : concentration moyenne de particules fines PM2,5 enregistrée chaque jour
  • wind_speed : vitesse moyenne du vent enregistrée chaque jour
  • temperature : température la plus élevée enregistrée chaque jour

La nouvelle table contient des données quotidiennes enregistrées le 11-08-2009 et le 31-01-2022.

Dans la requête GoogleSQL suivante, la clause FROM bigquery-public-data.epa_historical_air_quality.*_daily_summary indique que vous interrogez les tables *_daily_summary de l'ensemble de données epa_historical_air_quality. Ces tables sont des tables partitionnées.

#standardSQL
CREATE TABLE `bqml_tutorial.seattle_air_quality_daily`
AS
WITH
  pm25_daily AS (
    SELECT
      avg(arithmetic_mean) AS pm25, date_local AS date
    FROM
      `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
    WHERE
      city_name = 'Seattle'
      AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass'
    GROUP BY date_local
  ),
  wind_speed_daily AS (
    SELECT
      avg(arithmetic_mean) AS wind_speed, date_local AS date
    FROM
      `bigquery-public-data.epa_historical_air_quality.wind_daily_summary`
    WHERE
      city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant'
    GROUP BY date_local
  ),
  temperature_daily AS (
    SELECT
      avg(first_max_value) AS temperature, date_local AS date
    FROM
      `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary`
    WHERE
      city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature'
    GROUP BY date_local
  )
SELECT
  pm25_daily.date AS date, pm25, wind_speed, temperature
FROM pm25_daily
JOIN wind_speed_daily USING (date)
JOIN temperature_daily USING (date)

Pour exécuter la requête, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

  3. Cliquez sur Exécuter.

Étape 3 (facultative) : Visualiser la série temporelle pour laquelle vous souhaitez effectuer des prévisions

Avant de créer le modèle, il est utile de voir à quoi ressemble votre série temporelle d'entrée. Pour ce faire, utilisez Looker Studio.

Dans la requête GoogleSQL suivante, la clause FROM bqml_tutorial.seattle_air_quality_daily indique que vous interrogez la table seattle_air_quality_daily dans l'ensemble de données bqml_tutorial que vous venez de créer.

#standardSQL
SELECT
  *
FROM
  `bqml_tutorial.seattle_air_quality_daily`

Pour exécuter la requête, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
     *
    FROM
     `bqml_tutorial.seattle_air_quality_daily`
    
  3. Cliquez sur Exécuter.

    Une fois cette requête exécutée, la sortie ressemble à la capture d'écran suivante. Elle montre que cette série temporelle comporte 3 960 points de données. Cliquez sur le bouton Explorer les données, puis sur Explorer avec Looker Studio. Looker Studio s'ouvre dans un nouvel onglet. Procédez comme suit dans le nouvel onglet.

    Sortie de la requête

    Dans le panneau Chart (Graphique), sélectionnez Time series chart (Graphique de séries temporelles) :

    Time_series_chart

    Dans le panneau CONFIGURATION situé sous le panneau Graphique, accédez à la section Métrique. Ajoutez les champs pm25, temperature et wind_speed, puis supprimez la métrique par défaut Nombre d'enregistrements. Vous pouvez également définir une plage de dates personnalisée, par exemple du 1er janvier 2019 au 31 décembre 2021, afin de raccourcir la série temporelle. Ce processus est illustré dans la figure suivante.

    Time_series_data_fields

    Une fois ces étapes terminées, le graphique suivant s'affiche. Il montre que la série temporelle d'entrée présente une tendance saisonnière hebdomadaire.

    Result_visualization

Étape 4 : Créer un modèle de série temporelle

Vous allez ensuite créer un modèle de série temporelle à l'aide des données sur la qualité de l'air présentées ci-dessus. La requête GoogleSQL suivante crée un modèle permettant d'effectuer des prévisions sur la concentration moyenne de particules fines PM2,5 (pm25).

La clause CREATE MODEL crée et entraîne un modèle nommé bqml_tutorial.seattle_pm25_xreg_model.

#standardSQL
CREATE OR REPLACE
  MODEL
    `bqml_tutorial.seattle_pm25_xreg_model`
  OPTIONS (
    MODEL_TYPE = 'ARIMA_PLUS_XREG',
    time_series_timestamp_col = 'date',
    time_series_data_col = 'pm25')
AS
SELECT
  date,
  pm25,
  temperature,
  wind_speed
FROM
  `bqml_tutorial.seattle_air_quality_daily`
WHERE
  date
  BETWEEN DATE('2012-01-01')
  AND DATE('2020-12-31')

La clause OPTIONS(model_type='ARIMA_PLUS_XREG', time_series_timestamp_col='date', ...) indique que vous créez un modèle ARIMA avec des régresseurs externes. Le paramètre auto_arima=TRUE est défini par défaut ; l'algorithme auto.ARIMA va donc régler automatiquement les hyperparamètres dans les modèles ARIMA_PLUS_XREG. L'algorithme s'adapte à des dizaines de modèles candidats et choisit le meilleur d'entre eux, qui présente l'AIC (Akaike information criterion) le plus faible. De plus, comme la valeur par défaut est data_frequency='AUTO_FREQUENCY', le processus d'entraînement déduit automatiquement la fréquence des données de la série temporelle d'entrée.

Exécutez la requête CREATE MODEL pour créer et entraîner votre modèle :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

  3. Cliquez sur Exécuter.

    L'exécution de la requête prend environ 20 secondes, puis votre modèle (seattle_pm25_xreg_model) s'affiche dans le panneau de navigation. Étant donné que la requête utilise une instruction CREATE MODEL pour créer un modèle, les résultats de la requête ne sont pas affichés.

Étape 5 : Inspecter les métriques d'évaluation de tous les modèles évalués

Après avoir créé votre modèle, vous pouvez utiliser la fonction ML.ARIMA_EVALUATE pour afficher les métriques d'évaluation de tous les modèles candidats évalués lors du processus de réglage automatique des hyperparamètres.

Dans la requête GoogleSQL suivante, la clause FROM utilise la fonction ML.ARIMA_EVALUATE sur votre modèle bqml_tutorial.seattle_pm25_xreg_model. Par défaut, cette requête renvoie les métriques d'évaluation de tous les modèles candidats.

Pour exécuter la requête ML.ARIMA_EVALUATE, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
     *
    FROM
     ML.ARIMA_EVALUATE(MODEL `bqml_tutorial.seattle_pm25_xreg_model`)
    
  3. Cliquez sur Exécuter.

  4. Lorsque la requête est terminée, cliquez sur l'onglet Résultats sous la zone de texte de la requête. Les résultats doivent ressembler à la capture d'écran suivante :

    Sortie ML.ARIMA_EVALUATE.

    Les résultats incluent les colonnes suivantes :

    • non_seasonal_p
    • non_seasonal_d
    • non_seasonal_q
    • has_drift
    • log_likelihood
    • AIC
    • variance
    • seasonal_periods
    • has_holiday_effect
    • has_spikes_and_dips
    • has_step_changes
    • error_message

    Les quatre colonnes suivantes (non_seasonal_{p,d,q} et has_drift) définissent un modèle ARIMA dans le pipeline d'entraînement. Les trois métriques qui les suivent (log_likelihood, AIC et variance) sont pertinentes pour le processus d'ajustement du modèle ARIMA.

    L'algorithme auto.ARIMA utilise d'abord le test KPSS pour déterminer que la meilleure valeur pour non_seasonal_d est 1. Lorsque la valeur de non_seasonal_d est égale à 1, auto.ARIMA entraîne 42 modèles ARIMA candidats différents en parallèle. Notez que lorsque non_seasonal_d n'est pas égal à 1, auto.ARIMA entraîne 21 modèles candidats différents. Dans cet exemple, les 42 modèles candidats sont valides. Par conséquent, la sortie contient 42 lignes, chaque ligne étant associée à un modèle ARIMA candidat. Notez que pour certaines séries temporelles, certains modèles candidats ne sont pas valides, car ils sont soit non inversibles, soit non stationnaires. Ces modèles non valides sont exclus de la sortie, ce qui signifie qu'elle comporte moins de 42 lignes. Ces modèles candidats sont triés par ordre croissant de l'AIC. Le modèle de la première ligne présente l'AIC le plus bas, et il est considéré comme le meilleur modèle. Ce meilleur modèle est enregistré en tant que modèle final. Il est utilisé lorsque vous appelez ML.FORECAST, ML.EVALUATE et ML.ARIMA_COEFFICIENTS comme indiqué dans les étapes suivantes.

    La colonne seasonal_periods concerne la tendance saisonnière dans la série temporelle d'entrée. Il n'a rien à voir avec la modélisation ARIMA. Par conséquent, il présente la même valeur sur toutes les lignes de sortie. Il signale un motif hebdomadaire, ce qui est conforme à nos attentes, comme décrit à l'étape 2 ci-dessus.

    Les colonnes has_holiday_effect, has_spikes_and_dips et has_step_changes ne sont renseignées que lorsque decompose_time_series=TRUE. Elles concernent l'effet des jours fériés, les pics et baisses, ainsi que les modifications graduelles dans les séries temporelles d'entrée, qui ne sont pas liées à la modélisation ARIMA. Par conséquent, elles sont toutes identiques sur toutes les lignes de sortie, à l'exception de ces modèles défaillants.

    La colonne error_message indique que l'erreur possible est survenue lors du processus d'ajustement auto.ARIMA. Cela peut s'expliquer par le fait que les colonnes non_seasonal_p, non_seasonal_d, non_seasonal_q et has_drift sélectionnées ne peuvent pas stabiliser la série temporelle. Pour récupérer le message d'erreur possible de tous les modèles candidats, définissez show_all_candidate_models=true.

Étape 6 : Inspecter les coefficients de votre modèle

La fonction ML.ARIMA_COEFFICIENTS récupère les coefficients de votre modèle ARIMA_PLUS (bqml_tutorial.seattle_pm25_xreg_model). ML.ARIMA_COEFFICIENTS utilise le modèle comme seule entrée.

Exécutez la requête ML.ARIMA_COEFFICIENTS :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
     *
    FROM
     ML.ARIMA_COEFFICIENTS(MODEL `bqml_tutorial.seattle_pm25_xreg_model`)
    
  3. Cliquez sur Exécuter.

    Les résultats doivent se présenter sous la forme suivante :

    Sortie de ML.ARIMA_COEFFICIENTS

    Les résultats incluent les colonnes suivantes :

    • ar_coefficients
    • ma_coefficients
    • intercept_or_drift
    • processed_input
    • weight
    • category_weights.category
    • category_weights.weight

    ar_coefficients affiche les coefficients de modèle de la partie autorégressive (AR) du modèle ARIMA. De la même manière, ma_coefficients affiche les coefficients de modèle de la partie moyenne mobile (MA, moving-average). Il s'agit de deux tableaux, dont la longueur est respectivement égale à non_seasonal_p et non_seasonal_q. D'après la sortie de ML.ARIMA_EVALUATE, le meilleur modèle de la ligne supérieure a une valeur non_seasonal_p de 0 et une valeur non_seasonal_q de 5. Par conséquent, ar_coefficients est un tableau vide et ma_coefficients est un tableau de longueur 5. intercept_or_drift est le terme constant dans le modèle ARIMA.

    processed_input et les colonnes weight et category_weights correspondantes indiquent la pondération de chaque caractéristique et l'interception dans le modèle de régression linéaire. Si la caractéristique est une caractéristique numérique, la pondération se trouve dans la colonne weight. Si la caractéristique est une caractéristique catégorielle, category_weights est un tableau (ARRAY) de type STRUCT, où STRUCT contient les noms et les pondérations des catégories.

Étape 7 : Utiliser votre modèle pour prévoir la série temporelle

La fonction ML.FORECAST prévoit les valeurs futures de la série temporelle selon un intervalle de prédiction, à l'aide de votre modèle bqml_tutorial.seattle_pm25_xreg_model et des valeurs futures des caractéristiques.

Dans la requête GoogleSQL suivante, la clause STRUCT(30 AS horizon, 0.8 AS confidence_level) indique que la requête prévoit 30 points temporels futurs et génère un intervalle de prédiction avec un niveau de confiance de 80 %. La fonction ML.FORECAST utilise le modèle, les valeurs futures des caractéristiques, ainsi que quelques arguments facultatifs.

Pour exécuter la requête ML.FORECAST, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
    *
    FROM
    ML.FORECAST(
    MODEL `bqml_tutorial.seattle_pm25_xreg_model`,
    STRUCT(30 AS horizon, 0.8 AS confidence_level),
    (
      SELECT
        date,
        temperature,
        wind_speed
      FROM
        `bqml_tutorial.seattle_air_quality_daily`
      WHERE
        date > DATE('2020-12-31')
    ))
    
  3. Cliquez sur Exécuter.

    Les résultats doivent se présenter sous la forme suivante :

    Sortie de ML.FORECAST.

    Les résultats incluent les colonnes suivantes :

    • forecast_timestamp
    • forecast_value
    • standard_error
    • confidence_level
    • prediction_interval_lower_bound
    • prediction_interval_upper_bound

    Les lignes de sortie sont triées dans l'ordre chronologique de forecast_timestamp. Dans les prévisions de séries temporelles, l'intervalle de prédiction, délimité par les limites inférieure et supérieure, est aussi important que forecast_value. forecast_value est le point central de l'intervalle de prédiction. L'intervalle de prédiction dépend de standard_error et de confidence_level.

Étape 8 : Évaluer la précision des prévisions avec des données réelles

Pour évaluer la précision des prévisions avec les données réelles, vous pouvez utiliser la fonction ML.EVALUATE avec votre modèle, bqml_tutorial.seattle_pm25_xreg_model, et la table contenant les données réelles.

Pour exécuter la requête ML.EVALUATE, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
    *
    FROM
    ML.EVALUATE(
    MODEL `bqml_tutorial.seattle_pm25_xreg_model`,
    (
      SELECT
        date,
        pm25,
        temperature,
        wind_speed
      FROM
        `bqml_tutorial.seattle_air_quality_daily`
      WHERE
        date > DATE('2020-12-31')
    ),
    STRUCT(
      TRUE AS perform_aggregation,
      30 AS horizon))
    

    Le deuxième paramètre correspond aux données réelles pour les caractéristiques futures, qui permettent de prévoir les valeurs futures à comparer aux données réelles. Le troisième paramètre est un objet struct regroupant des paramètres pour cette fonction.

  3. Cliquez sur Exécuter.

    Les résultats doivent se présenter sous la forme suivante :

    Résultat de ML.EVALUATE.

Étape 9 : Expliquer les résultats des prévisions

Pour comprendre comment les séries temporelles sont prévues, la fonction ML.EXPLAIN_FORECAST prédit les valeurs futures des séries temporelles avec un intervalle de prédiction à l'aide de votre modèle, bqml_tutorial.seattle_pm25_xreg_model, et renvoie dans le même temps tous les composants distincts de la série temporelle.

Comme la fonction ML.FORECAST, la clause STRUCT(30 AS horizon, 0.8 AS confidence_level) indique que la requête prévoit 30 points temporels futurs et génère un intervalle de prédiction avec un indice de confiance de 80 %. La fonction ML.EXPLAIN_FORECAST utilise le modèle, les valeurs de caractéristiques futures et quelques arguments facultatifs en entrée.

Pour exécuter la requête ML.EXPLAIN_FORECAST, procédez comme suit :

  1. Dans la console Google Cloud, cliquez sur le bouton Saisir une nouvelle requête.

  2. Saisissez la requête GoogleSQL suivante dans la zone de texte Éditeur de requête.

    #standardSQL
    SELECT
      *
    FROM
      ML.EXPLAIN_FORECAST(
        MODEL `bqml_tutorial.seattle_pm25_xreg_model`,
        STRUCT(30 AS horizon, 0.8 AS confidence_level),
        (
          SELECT
            date,
            temperature,
            wind_speed
          FROM
            `bqml_tutorial.seattle_air_quality_daily`
          WHERE
            date > DATE('2020-12-31')
        ))
    
  3. Cliquez sur Exécuter.

    L'exécution de la requête prend moins d'une seconde. Les résultats doivent se présenter sous la forme suivante :

    ML.EXPLAIN_FORECAST output1. ML.EXPLAIN_FORECAST output2.

    Les résultats incluent les colonnes suivantes :

    • time_series_timestamp
    • time_series_type
    • time_series_data
    • time_series_adjusted_data
    • standard_error
    • confidence_level
    • prediction_interval_lower_bound
    • prediction_interval_lower_bound
    • trend
    • seasonal_period_yearly
    • seasonal_period_quarterly
    • seasonal_period_monthly
    • seasonal_period_weekly
    • seasonal_period_daily
    • holiday_effect
    • spikes_and_dips
    • step_changes
    • residual
    • attribution_temperature
    • attribution_wind_speed
    • attribution___INTERCEPT__

    Les lignes de sortie sont triées dans l'ordre chronologique de time_series_timestamp. Différents composants sont répertoriés sous forme de colonnes de sortie. Pour en savoir plus, consultez la section ML.EXPLAIN_FORECAST.

Effectuer un nettoyage

Pour éviter que les ressources utilisées lors de ce tutoriel soient facturées sur votre compte Google Cloud, supprimez le projet contenant les ressources, ou conservez le projet et supprimez les ressources individuelles.

  • Supprimez le projet que vous avez créé.
  • Ou conservez le projet et supprimez l'ensemble de données.

Supprimer l'ensemble de données

La suppression de votre projet entraîne celle de tous les ensembles de données et de toutes les tables qui lui sont associés. Si vous préférez réutiliser le projet, vous pouvez supprimer l'ensemble de données que vous avez créé dans ce tutoriel :

  1. Si nécessaire, ouvrez la page BigQuery dans Cloud Console.

    Accéder à BigQuery

  2. Dans le panneau de navigation, cliquez sur l'ensemble de données bqml_tutorial que vous avez créé.

  3. Cliquez sur Delete dataset (Supprimer l'ensemble de données) dans la partie droite de la fenêtre. Cette action supprime l'ensemble de données, la table et toutes les données.

  4. Dans la boîte de dialogue Supprimer l'ensemble de données, confirmez la commande de suppression en saisissant le nom de votre ensemble de données (bqml_tutorial), puis cliquez sur Supprimer.

Supprimer votre projet

Pour supprimer le projet :

  1. Dans la console Google Cloud, accédez à la page Gérer les ressources.

    Accéder à la page Gérer les ressources

  2. Dans la liste des projets, sélectionnez le projet que vous souhaitez supprimer, puis cliquez sur Supprimer.
  3. Dans la boîte de dialogue, saisissez l'ID du projet, puis cliquez sur Arrêter pour supprimer le projet.

Étape suivante