Annota le immagini con la funzione ML.ANNOTATE_IMAGE
Questo documento descrive come utilizzare la
funzione ML.ANNOTATE_IMAGE
con un
modello remoto
per annotare le immagini di una
tabella di oggetti.
Autorizzazioni obbligatorie
Per creare una connessione, devi disporre del seguente ruolo:
roles/bigquery.connectionAdmin
Per concedere le autorizzazioni all'account di servizio della connessione, è necessario il seguente autorizzazione:
resourcemanager.projects.setIamPolicy
Per creare il modello utilizzando BigQuery ML, è necessario quanto segue autorizzazioni:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:
bigquery.tables.getData
nella tabella degli oggettibigquery.models.getData
sul modellobigquery.jobs.create
Prima di iniziare
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
Crea una connessione
Crea una connessione alle risorse cloud e recupera l'account di servizio della connessione.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Per creare una connessione, fai clic su
Aggiungi e poi su Connessioni a origini dati esterne.Nell'elenco Tipo di connessione, seleziona Modelli remoti Vertex AI, funzioni remote e BigLake (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per connessione.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in una passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_id
sostituisce il progetto predefinito.Sostituisci quanto segue:
REGION
: la regione di connessionePROJECT_ID
: il tuo ID progetto Google CloudCONNECTION_ID
: un ID per la connessione
Quando crei una risorsa di connessione, BigQuery crea un account di servizio di sistema unico e lo associa alla connessione.
Risoluzione dei problemi: se ricevi il seguente errore di connessione, Aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Aggiungi la seguente sezione al file main.tf
.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: un ID per la connessionePROJECT_ID
: l'ID del tuo progetto Google CloudREGION
: il tuo regione di connessione
Concedi l'accesso all'account di servizio
Seleziona una delle seguenti opzioni:
Console
Vai alla sezione IAM e Console di amministrazione.
Fai clic su
Aggiungi.Viene visualizzata la finestra di dialogo Aggiungi entità.
Nel campo Nuove entità, inserisci l'ID account di servizio che copiato in precedenza.
Nel campo Seleziona un ruolo, seleziona Utilizzo del servizio, quindi Seleziona Service Usage Consumer (Consumatore utilizzo dei servizi).
Fai clic su Aggiungi un altro ruolo.
Nel campo Seleziona un ruolo, seleziona BigQuery e poi Seleziona Utente connessione BigQuery.
Fai clic su Salva.
gcloud
Utilizza la
Comando gcloud projects add-iam-policy-binding
:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None
Sostituisci quanto segue:
PROJECT_NUMBER
: il numero del progetto.MEMBER
: l'ID dell'account di servizio che copiato in precedenza.
La mancata concessione dell'autorizzazione comporta un errore.
Crea una tabella di oggetti
Crea una tabella di oggetti con contenuti di immagini. La tabella degli oggetti consente di analizzare le immagini senza spostarle da Cloud Storage.
Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve essere nel percorso
nello stesso progetto in cui prevedi di creare il modello e chiamare
Funzione ML.ANNOTATE_IMAGE
. Se vuoi chiamare il
Funzione ML.ANNOTATE_IMAGE
in un progetto diverso da quello
che contiene il bucket Cloud Storage utilizzato dalla tabella degli oggetti, devi
concedere il ruolo Amministratore Storage a livello di bucket.
crea un modello
Crea un modello remoto con
REMOTE_SERVICE_TYPE
di
CLOUD_AI_VISION_V1
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che deve contenere il modello. Questo set di dati deve trovarsi nella stessa posizione della connessione che stai utilizzando.MODEL_NAME
: il nome del modello.REGION
: la regione utilizzata dalla connessione.CONNECTION_ID
: l'ID connessione per ad esempiomyconnection
.Quando visualizzi i dettagli della connessione nella console Google Cloud, l'ID connessione è il valore nell'ultima sezione dell'ID connessione completo visualizzato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
.
Annotare le immagini
Annota le immagini con la funzione ML.ANNOTATE_IMAGE
:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME, STRUCT(['FEATURE_NAME' [,...]] AS vision_features) );
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che contiene il modello.MODEL_NAME
: il nome del modello.OBJECT_TABLE_NAME
: il nome della tabella di oggetti che contiene gli URI delle immagini da annotare.FEATURE_NAME
: il nome di un partner supportato Funzionalità dell'API Cloud Vision.
Esempio 1
L'esempio seguente etichetta gli elementi mostrati nelle immagini:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['label_detection'] AS vision_features) );
Esempio 2
L'esempio seguente rileva i volti mostrati nelle immagini e restituisce anche attributi delle immagini, come i colori predominanti:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['face_detection', 'image_properties'] AS vision_features) );
Passaggi successivi
- Per scoprire di più sull'inferenza del modello, incluse altre funzioni che puoi utilizzare per analizzare i dati di BigQuery, consulta la Panoramica dell'inferenza del modello.
- Per informazioni sulle istruzioni e sulle funzioni SQL supportate per ogni tipo di modello, consulta Percorso dell'utente end-to-end per ogni modello.
- Prova la Analisi dei dati non strutturati con BigQuery ML e Blocco note dei modelli preaddestrati Vertex AI.