ML.ANNOTATE_IMAGE 関数を使用して画像にアノテーションを付加する
このドキュメントでは、リモートモデルで ML.ANNOTATE_IMAGE
関数を使用して、オブジェクト テーブル内の画像にアノテーションを付加する方法について説明します。
必要な権限
接続を作成するには、次のロールのメンバーシップが必要です。
roles/bigquery.connectionAdmin
接続のサービス アカウントに権限を付与するには、次の権限が必要です。
resourcemanager.projects.setIamPolicy
BigQuery ML を使用してモデルを作成するには、次の権限が必要です。
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
推論を実行するには、次の権限が必要です。
- オブジェクト テーブルに対する
bigquery.tables.getData
- モデルに対する
bigquery.models.getData
bigquery.jobs.create
- オブジェクト テーブルに対する
始める前に
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
接続を作成する
クラウド リソース接続を作成し、接続のサービス アカウントを取得します。
次のオプションのいずれかを選択します。
コンソール
[BigQuery] ページに移動します。
接続を作成するには、[
追加] をクリックし、続いて [外部データソースへの接続] をクリックします。[接続タイプ] リストで、[Vertex AI リモートモデル、リモート関数、BigLake(Cloud リソース)] を選択します。
[接続 ID] フィールドに接続の名前を入力します。
[接続を作成] をクリックします。
[接続へ移動] をクリックします。
[接続情報] ペインで、次の手順で使用するサービス アカウント ID をコピーします。
bq
コマンドライン環境で接続を作成します。
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
--project_id
パラメータは、デフォルト プロジェクトをオーバーライドします。次のように置き換えます。
REGION
: 接続のリージョンPROJECT_ID
: 実際の Google Cloud プロジェクト IDCONNECTION_ID
: 接続の ID
接続リソースを作成すると、BigQuery は、一意のシステム サービス アカウントを作成し、それを接続に関連付けます。
トラブルシューティング: 次の接続エラーが発生した場合は、Google Cloud SDK を更新します。
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
後の手順で使用するため、サービス アカウント ID を取得してコピーします。
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
出力は次のようになります。
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
main.tf
ファイルに次のセクションを追加します。
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: 接続の IDPROJECT_ID
: 実際の Google Cloud プロジェクト IDREGION
: 接続のリージョン
サービス アカウントへのアクセスを許可する
次のオプションのいずれかを選択します。
コンソール
[IAM と管理] ページに移動します。
[
追加] をクリックします。[プリンシパルを追加] ダイアログが開きます。
[新しいプリンシパル] フィールドに、前の手順でコピーしたサービス アカウント ID を入力します。
[ロールを選択] フィールドで、[Service Usage] を選択し、[Service Usage コンシューマ] を選択します。
[別のロールを追加] をクリックします。
[ロールを選択] フィールドで、[BigQuery] を選択し、[BigQuery Connection ユーザー] を選択します。
[保存] をクリックします。
gcloud
gcloud projects add-iam-policy-binding
コマンドを実行します。
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None
次のように置き換えます。
PROJECT_NUMBER
: プロジェクトの番号。MEMBER
: 先ほどコピーしたサービス アカウント ID。
権限を付与しないと、エラーが発生します。
オブジェクト テーブルを作成する
画像コンテンツを含むオブジェクト テーブルを作成します。オブジェクト テーブルを使用すると、Cloud Storage から画像を移動することなく分析できます。
オブジェクト テーブルで使用される Cloud Storage バケットは、モデルを作成し、ML.ANNOTATE_IMAGE
関数を呼び出すプロジェクトに含まれている必要があります。オブジェクト テーブルで使用される Cloud Storage バケットを含むプロジェクトとは異なるプロジェクトで ML.ANNOTATE_IMAGE
関数を呼び出す場合は、バケットレベルでストレージ管理者ロールを付与する必要があります。
モデルを作成する
CLOUD_AI_VISION_V1
の REMOTE_SERVICE_TYPE
を使用してリモートモデルを作成します。
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');
次のように置き換えます。
PROJECT_ID
: プロジェクト ID。DATASET_ID
: モデルを保存するデータセットの ID。このデータセットは、使用している接続と同じロケーションに存在する必要があります。MODEL_NAME
: モデルの名前。REGION
: 接続で使用されるリージョン。CONNECTION_ID
: 接続 ID(例:myconnection
)。Google Cloud コンソールで接続の詳細を表示する場合、接続 ID は接続 ID に表示される完全修飾接続 ID の最後のセクションの値です(例:
projects/myproject/locations/connection_location/connections/myconnection
)。
画像にアノテーションを付ける
ML.ANNOTATE_IMAGE
関数を使用して画像にアノテーションを付けます。
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME, STRUCT(['FEATURE_NAME' [,...]] AS vision_features) );
次のように置き換えます。
PROJECT_ID
: プロジェクト ID。DATASET_ID
: モデルを格納するデータセットの ID。MODEL_NAME
: モデルの名前。OBJECT_TABLE_NAME
: アノテーションを付ける画像の URI を含むオブジェクト テーブルの名前。FEATURE_NAME
: サポートされている Cloud Vision API 機能の名前。
例 1
次の例では、画像内のアイテムにラベルを付けます。
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['label_detection'] AS vision_features) );
例 2
次の例では、画像内にある顔を検出し、ドミナント カラーなどの画像属性も返します。
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['face_detection', 'image_properties'] AS vision_features) );
次のステップ
- BigQuery データの分析に使用できるその他の関数を含むモデル推定の詳細については、モデル推定の概要をご覧ください。
- 各モデルタイプでサポートされている SQL ステートメントと関数については、各モデルのエンドツーエンドのユーザー ジャーニーをご覧ください。
- BigQuery ML と Vertex AI の事前トレーニング済みモデルを使用した非構造化データの分析ノートブックを試す。