Addestra un modello di analisi del sentiment del testo

Questa pagina mostra come addestrare un modello di analisi del sentiment AutoML da un set di dati di testo utilizzando la console Google Cloud o l'API Vertex AI.

Prima di iniziare

Prima di poter addestrare un modello di analisi del sentiment del testo, devi completare quanto segue:

Addestramento di un modello AutoML

Console Google Cloud

  1. Nella console Google Cloud, nella sezione Vertex AI, vai alla pagina Set di dati.

    Vai alla pagina Set di dati

  2. Fai clic sul nome del set di dati che vuoi utilizzare per addestrare il modello per aprire la relativa pagina dei dettagli.

  3. Fai clic su Addestra nuovo modello.

  4. Per il metodo di addestramento, seleziona AutoML:

  5. Fai clic su Continua.

  6. Inserisci un nome per il modello.

  7. Se vuoi impostare manualmente la suddivisione dei dati di addestramento, espandi Avanzato opzioni e seleziona un'opzione di suddivisione dati. Scopri di più.

  8. Fai clic su Inizia addestramento.

    L'addestramento del modello può richiedere molte ore, a seconda delle dimensioni e della complessità dei dati e del budget di addestramento, se ne hai specificato uno. Puoi chiudere questa scheda e in un secondo momento. Riceverai un'email quando il modello sarà completato addestramento.

API

Seleziona una scheda per la tua lingua o il tuo ambiente:

REST

Crea un oggetto TrainingPipeline per addestrare un modello.

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • LOCATION: la regione in cui verrà creato il modello, ad esempio us-central1
  • PROJECT: il tuo ID progetto
  • MODEL_DISPLAY_NAME: il nome del modello visualizzato nell'interfaccia utente
  • SENTIMENT_MAX: il punteggio di sentiment massimo nel tuo addestramento dataset
  • DATASET_ID: l'ID del set di dati
  • PROJECT_NUMBER: il numero di progetto generato automaticamente per il tuo progetto

Metodo HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON della richiesta:

{
  "displayName": "MODEL_DISPLAY_NAME",
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_sentiment_1.0.0.yaml",
  "trainingTaskInputs": {
    "sentimentMax": SENTIMENT_MAX
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME"
  },
  "inputDataConfig": {
    "datasetId": "DATASET_ID"
  }
}

Per inviare la richiesta, espandi una di queste opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/trainingPipelines/PIPELINE_ID",
  "displayName": "MODEL_DISPLAY_NAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID"
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_sentiment_1.0.0.yaml",
  "trainingTaskInputs": {
    "sentimentMax": SENTIMENT_MAX
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME"
  },
  "state": "PIPELINE_STATE_PENDING",
  "createTime": "2020-04-18T01:22:57.479336Z",
  "updateTime": "2020-04-18T01:22:57.479336Z"
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTextSentimentInputs;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineTextSentimentAnalysisSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";

    createTrainingPipelineTextSentimentAnalysisSample(
        project, trainingPipelineDisplayName, datasetId, modelDisplayName);
  }

  static void createTrainingPipelineTextSentimentAnalysisSample(
      String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_text_sentiment_1.0.0.yaml";

      LocationName locationName = LocationName.of(project, location);

      AutoMlTextSentimentInputs trainingTaskInputs =
          AutoMlTextSentimentInputs.newBuilder()
              // Sentiment max must be between 1 and 10 inclusive.
              // Higher value means positive sentiment.
              .setSentimentMax(4)
              .build();

      InputDataConfig trainingInputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(trainingPipelineDisplayName)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
              .setInputDataConfig(trainingInputDataConfig)
              .setModelToUpload(model)
              .build();

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Text Sentiment Analysis Response");
      System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
      System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());

      System.out.format(
          "\tTraining Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("State: %s\n", trainingPipelineResponse.getState());

      System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("\tStartTime %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
      System.out.println("\tInput Data Config");
      System.out.format("\t\tDataset Id: %s", inputDataConfig.getDatasetId());
      System.out.format("\t\tAnnotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
      System.out.println("\t\tFraction Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfig.getFilterSplit();
      System.out.println("\t\tFilter Split");
      System.out.format("\t\t\tTraining Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("\t\t\tValidation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("\t\t\tTest Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
      System.out.println("\t\tPredefined Split");
      System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
      System.out.println("\t\tTimestamp Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("\tModel To Upload");
      System.out.format("\t\tName: %s\n", modelResponse.getName());
      System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
      System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());

      System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("\t\tMetadata: %s\n", modelResponse.getMetadata());
      System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "\t\tSupported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList());
      System.out.format(
          "\t\tSupported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList());
      System.out.format(
          "\t\tSupported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList());

      System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
      System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("\t\tLabels: %sn\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("\t\tPredict Schemata");
      System.out.format("\t\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format(
          "\t\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format(
          "\t\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("\t\tSupported Export Format");
        System.out.format("\t\t\tId: %s\n", exportFormat.getId());
      }

      ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
      System.out.println("\t\tContainer Spec");
      System.out.format("\t\t\tImage Uri: %s\n", modelContainerSpec.getImageUri());
      System.out.format("\t\t\tCommand: %s\n", modelContainerSpec.getCommandList());
      System.out.format("\t\t\tArgs: %s\n", modelContainerSpec.getArgsList());
      System.out.format("\t\t\tPredict Route: %s\n", modelContainerSpec.getPredictRoute());
      System.out.format("\t\t\tHealth Route: %s\n", modelContainerSpec.getHealthRoute());

      for (EnvVar envVar : modelContainerSpec.getEnvList()) {
        System.out.println("\t\t\tEnv");
        System.out.format("\t\t\t\tName: %s\n", envVar.getName());
        System.out.format("\t\t\t\tValue: %s\n", envVar.getValue());
      }

      for (Port port : modelContainerSpec.getPortsList()) {
        System.out.println("\t\t\tPort");
        System.out.format("\t\t\t\tContainer Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("\t\tDeployed Model");
        System.out.format("\t\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("\t\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }

      Status status = trainingPipelineResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineTextSentimentAnalysis() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  const trainingTaskInputObj = new definition.AutoMlTextSentimentInputs({
    sentimentMax: 4,
  });
  const trainingTaskInputs = trainingTaskInputObj.toValue();

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition:
      'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_sentiment_1.0.0.yaml',
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {
    parent,
    trainingPipeline,
  };

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline text sentiment analysis response :');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineTextSentimentAnalysis();

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.

def create_training_pipeline_text_sentiment_analysis_sample(
    project: str,
    location: str,
    display_name: str,
    dataset_id: str,
    model_display_name: Optional[str] = None,
    sentiment_max: int = 10,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    budget_milli_node_hours: int = 8000,
    disable_early_stopping: bool = False,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.AutoMLTextTrainingJob(
        display_name=display_name,
        prediction_type="sentiment",
        sentiment_max=sentiment_max,
    )

    text_dataset = aiplatform.TextDataset(dataset_id)

    model = job.run(
        dataset=text_dataset,
        model_display_name=model_display_name,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        budget_milli_node_hours=budget_milli_node_hours,
        disable_early_stopping=disable_early_stopping,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model

Controllare la suddivisione dei dati utilizzando REST

Puoi controllare la modalità di suddivisione dei dati di addestramento tra i set di addestramento, convalida e test. Quando utilizzi l'API Vertex AI, utilizza l'oggetto Split per determinare la suddivisione dei dati. L'oggetto Split può essere incluso nell'oggetto InputConfig come uno dei vari tipi di oggetto, ognuno dei quali fornisce un modo diverso suddividere i dati di addestramento. Puoi selezionare un solo metodo.

  • FractionSplit:
    • TRAINING_FRACTION: la frazione dei dati di addestramento da per il set di addestramento.
    • VALIDATION_FRACTION: la frazione dei dati di addestramento da utilizzare per il set di convalida. Non utilizzato per i dati video.
    • TEST_FRACTION: la frazione dei dati di addestramento da utilizzato per il set di test.

    Se viene specificata una delle frazioni, devono essere specificate tutte. La somma delle frazioni deve essere pari a 1,0. I valori predefiniti per le frazioni variano a seconda del tipo di dati. Scopri di più.

    "fractionSplit": {
      "trainingFraction": TRAINING_FRACTION,
      "validationFraction": VALIDATION_FRACTION,
      "testFraction": TEST_FRACTION
    },
    
  • FilterSplit:
    • TRAINING_FILTER: gli elementi di dati corrispondenti a questo filtro vengono utilizzati per il set di addestramento.
    • VALIDATION_FILTER: gli elementi di dati che corrispondono a questo filtro sono utilizzato per il set di convalida. Deve essere "-" per i dati video.
    • TEST_FILTER: gli elementi di dati corrispondenti a questo filtro vengono utilizzati per il set di test.

    Questi filtri possono essere utilizzati con l'etichetta ml_use o con qualsiasi etichetta applicata ai dati. Scopri di più sull'utilizzo l'etichetta ml-use e altre etichette per filtrare i dati.

    L'esempio seguente mostra come utilizzare l'oggetto filterSplit con l'etichetta ml_use, con il set di convalida incluso:

    "filterSplit": {
    "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training",
    "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation",
    "testFilter": "labels.aiplatform.googleapis.com/ml_use=test"
    }