このページでは、Google Cloud コンソールまたは Vertex AI API を使用して、テキスト データセットから AutoML エンティティ抽出モデルをトレーニングする方法について説明します。
始める前に
テキスト エンティティ抽出モデルをトレーニングするには、次の作業を完了しておく必要があります。
AutoML モデルをトレーニングする
Google Cloud コンソール
Google Cloud コンソールの [Vertex AI] セクションで、[データセット] ページに移動します。
モデルのトレーニングに使用するデータセットの名前をクリックして、詳細ページを開きます。
このモデルに使用するアノテーション セットを選択します。
[新しいモデルのトレーニング] をクリックします。
トレーニング メソッドとして [
AutoML] を選択します。[続行] をクリックします。
モデルの名前を入力します。
トレーニング データの分割方法を手動で設定する場合は、[ADVANCED OPTIONS] を開き、データ分割オプションを選択します(詳細はこちら)。
[トレーニングを開始] をクリックします。
データのサイズ、複雑さ、トレーニング予算(指定された場合)に応じて、モデルのトレーニングに何時間もかかることがあります。このタブを閉じて、後で戻ることもできます。モデルのトレーニングが完了すると、メールが送られてきます。
API
お使いの言語または環境に応じて、以下のタブを選択してください。
REST
モデルをトレーニングする TrainingPipeline
オブジェクトを作成します。
リクエストのデータを使用する前に、次のように置き換えます。
- LOCATION: モデルが作成されるリージョン(
us-central1
など) - PROJECT: 実際のプロジェクト ID
- MODEL_DISPLAY_NAME: ユーザー インターフェースに表示されるモデルの名前
- DATASET_ID: データセットの ID
- PROJECT_NUMBER: プロジェクトに自動生成されたプロジェクト番号
HTTP メソッドと URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines
リクエストの本文(JSON):
{ "displayName": "MODEL_DISPLAY_NAME", "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_extraction_1.0.0.yaml", "modelToUpload": { "displayName": "MODEL_DISPLAY_NAME" }, "inputDataConfig": { "datasetId": "DATASET_ID" } }
リクエストを送信するには、次のいずれかのオプションを開きます。
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_NUMBER/locations/us-central1/trainingPipelines/PIPELINE_ID", "displayName": "MODEL_DISPLAY_NAME", "inputDataConfig": { "datasetId": "DATASET_ID" }, "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_extraction_1.0.0.yaml", "modelToUpload": { "displayName": "MODEL_DISPLAY_NAME" }, "state": "PIPELINE_STATE_PENDING", "createTime": "2020-04-18T01:22:57.479336Z", "updateTime": "2020-04-18T01:22:57.479336Z" }
Java
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Node.js
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Python
Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。
REST を使用してデータ分割を制御する
トレーニング セット、検証セット、テストセットの間でトレーニング データをどのように分割するかを制御できます。Vertex AI API を使用する場合は、Split
オブジェクトを使用してデータの分割を決定します。トレーニング データの分割に使用できるオブジェクト タイプの一つとして、Split
オブジェクトを InputConfig
オブジェクトに含めることができます。選択できるメソッドは 1 つのみです。
-
FractionSplit
:- TRAINING_FRACTION: トレーニング セットに使用されるトレーニング データの割合。
- VALIDATION_FRACTION: 検証セットに使用されるトレーニング データの割合。動画データに対しては使用されません。
- TEST_FRACTION: テストセットに使用されるトレーニング データの割合。
いずれか一つでも指定する場合は、すべてを指定する必要があります。割合の合計が 1.0 になるようにしてください。割合のデフォルト値は、データ型によって異なります。詳細については、こちらをご覧ください。
"fractionSplit": { "trainingFraction": TRAINING_FRACTION, "validationFraction": VALIDATION_FRACTION, "testFraction": TEST_FRACTION },
-
FilterSplit
: - TRAINING_FILTER: このフィルタに一致するデータ項目がトレーニング セットに使用されます。
- VALIDATION_FILTER: このフィルタに一致するデータ項目が検証セットに使用されます。動画データの場合は "-" にする必要があります。
- TEST_FILTER: このフィルタに一致するデータ項目がテストセットに使用されます。
これらのフィルタは、ml_use
ラベル、またはデータに適用された任意のラベルとともに使用できます。ml-use ラベルとその他のラベルを使用してデータをフィルタリングする方法をご確認ください。
次の例は、検証セットを含む、ml_use
ラベルを持つ filterSplit
オブジェクトの使用方法を示しています。
"filterSplit": { "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training", "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation", "testFilter": "labels.aiplatform.googleapis.com/ml_use=test" }